Chapter 41 GMAC Ethernet Interface

41.1 Overview

The GMAC Ethernet Controller provides a complete Ethernet interface from processor to a Reduced Media Independent Interface (RMII) and Reduced Gigabit Media Independent Interface (RGMII) compliant Ethernet PHY.

The GMAC includes a DMA controller. The DMA controller efficiently moves packet data from microprocessor's RAM, formats the data for an IEEE 802.3-2002 compliant packet and transmits the data to an Ethernet Physical Interface (PHY). It also efficiently moves packet data from RXFIFO to microprocessor's RAM.

41.1.1 Features

- Supports 10/100/1000-Mbps data transfer rates with the RGMII interfaces
- Supports 10/100-Mbps data transfer rates with the RMII interfaces
- Supports both full-duplex and half-duplex operation
 - Supports CSMA/CD Protocol for half-duplex operation
 - Supports packet bursting and frame extension in 1000 Mbps half-duplex operation
 - Supports IEEE 802.3x flow control for full-duplex operation
 - Optional forwarding of received pause control frames to the user application in full-duplex operation
 - Back-pressure support for half-duplex operation
 - Automatic transmission of zero-quanta pause frame on deassertion of flow control input in full-duplex operation
- Preamble and start-of-frame data (SFD) insertion in Transmit, and deletion in Receive paths
- Automatic CRC and pad generation controllable on a per-frame basis
- Options for Automatic Pad/CRC Stripping on receive frames
- Programmable frame length to support Standard Ethernet frames
- Programmable InterFrameGap (40-96 bit times in steps of 8)
- Supports a variety of flexible address filtering modes:
 - 64-bit Hash filter (optional) for multicast and uni-cast (DA) addresses
 - Option to pass all multicast addressed frames
 - Promiscuous mode support to pass all frames without any filtering for network monitoring
 - Passes all incoming packets (as per filter) with a status report
 - Separate 32-bit status returned for transmission and reception packets
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- MDIO Master interface for PHY device configuration and management
- Support detection of LAN wake-up frames and AMD Magic Packet frames
- Support checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame
- Support checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams
- Comprehensive status reporting for normal operation and transfers with errors
- Support per-frame Transmit/Receive complete interrupt control
- Supports 4-KB receive FIFO depths on reception.
- Supports 2-KB FIFO depth on transmission
- Automatic generation of PAUSE frame control or backpressure signal to the GMAC core based on Receive FIFO-fill (threshold configurable) level
- Handles automatic retransmission of Collision frames for transmission
- Discards frames on late collision, excessive collisions, excessive deferral and underrun conditions
- AXI interface to any CPU or memory
- Software can select the type of AXI burst (fixed and variable length burst) in the AXI Master interface
- Supports internal loopback on the RGMII/RMII for debugging
- Debug status register that gives status of FSMs in Transmit and Receive data-paths and FIFO fill-levels.

41.2 Block Diagram

Fig. 41-1 GMAC architecture

The GMAC is broken up into multiple separate functional units. These blocks are interconnected in the MAC module. The block diagram shows the general flow of data and control signals between these blocks.

The GMAC transfers data to system memory through the AXI master interface. The host CPU uses the APB Slave interface to access the GMAC subsystem's control and status registers (CSRs).

The GMAC supports the PHY interfaces of reduced GMII (RGMII) and reduced MII (RMII).

The Transmit FIFO (Tx FIFO) buffers data read from system memory by the DMA before transmission by the GMAC Core. Similarly, the Receive FIFO (Rx FIFO) stores the Ethernet frames received from the line until they are transferred to system memory by the DMA. These are asynchronous FIFOs, as they also transfer the data between the application clock and the GMAC line clocks.

41.3 Function Description

41.3.1 Frame Structure

Data frames transmitted shall have the frame format shown in Fig 32-2.

<inter-frame><preamble><sfd><data><efd>

Fig. 41-2 MAC Frame structure

The preamble <preamble> begins a frame transmission. The bit value of the preamble field consists of 7 octets with the following bit values:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The SFD (start frame delimiter) <sfd> indicates the start of a frame and follows the preamble. The bit value is 10101011.

The data in a well formed frame shall consist of N octets data.

41.3.2 RMII Interface timing diagram

The Reduced Media Independent Interface (RMII) specification reduces the pin count between Ethernet PHYs and Switch ASICs (only in 10/100 mode). According to the IEEE 802.3u standard, an MII contains 16 pins for data and control. In devices incorporating multiple MAC or PHY interfaces (such as switches), the number of pins adds significant

cost with increase in port count. The RMII specification addresses this problem by reducing the pin count to 7 for each port - a 62.5% decrease in pin count.

The RMII module is instantiated between the GMAC and the PHY. This helps translation of the MAC's MII into the RMII. The RMII block has the following characteristics:

• Supports 10-Mbps and 100-Mbps operating rates. It does not support 1000-Mbps operation.

• Two clock references are sourced externally or CRU, providing independent, 2-bit wide transmit and receive paths.

Transmit Bit Ordering

Each nibble from the MII must be transmitted on the RMII a di-bit at a time with the order of di-bit transmission shown in Fig.1-3. The lower order bits (D1 and D0) are transmitted first followed by higher order bits (D2 and D3).

RMII Transmit Timing Diagrams

Fig.1-4 through 1-7 show MII-to-RMII transaction timing. The clk_rmii_i (REF_CLK) frequency is 50MHz in RMII interface. In 10Mb/s mode, as the REF_CLK frequency is 10 times as the data rate, the value on rmii_txd_o[1:0] (TXD[1:0]) shall be valid such that TXD[1:0] may be sampled every 10th cycle, regard-less of the starting cycle within the gRup and yield the correct frame data.

Fig. 41-4 Start of MII and RMII transmission in 100-Mbps mode

Receive Bit Ordering

Each nibble is transmitted to the MII from the di-bit received from the RMII in the nibble transmission order shown in Fig.1-8. The lower order bits (D0 and D1) are received first, followed by the higher order bits (D2 and D3).

Fig. 41-8 RMII receive bit ordering

41.3.3 RGMII interface

The Reduced Gigabit Media Independent Interface (RGMII) specification reduces the pin count of the interconnection between the GMAC 10/100/1000 controller and the PHY for GMII and MII interfaces. To achieve this, the data path and control signals are reduced and multiplexed together with both the edges of the transmit and receive clocks. For gigabit operation the clocks operate at 125 MHz; for 10/100 operation, the clock rates are 2.5 MHz/25 MHz.

In the GMAC 10/100/1000 controller, the RGMII module is instantiated between the GMAC core's GMII and the PHY to translate the control and data signals between the GMII and RGMII protocols.

The RGMII block has the following characteristics:

- Supports 10-Mbps, 100-Mbps, and 1000-Mbps operation rates.
- For the RGMII block, no extra clock is required because both the edges of the incoming clocks are used.
- The RGMII block extracts the in-band (link speed, duplex mode and link status) status signals from the PHY and provides them to the GMAC core logic for link detection.

41.3.4 Management Interface

The MAC management interface provides a simple, two-wire, serial interface to connect the GMAC and a managed PHY, for the purposes of controlling the PHY and gathering status from the PHY. The management interface consists of a pair of signals that transport the management information across the MII bus: MDIO and MDC.

The GMAC initiates the management write/read operation. The clock gmii_mdc_o(MDC) is a divided clock from application clock pclk_gmac. The divide factor depends on the clock range setting in the GMII address register. Clock range is set as follows:

Selection	pclk_gmac	MDC Clock
0000	60-100 MHz	pclk_gmac/42
0001	100-150 MHz	pclk_gmac/62
0010	20-35 MHz	pclk_gmac/16
0011	35-60 MHz	pclk_gmac/26
0100	150-250 MHz	pclk_gmac/102
0101	250-300 MHz	pclk_gmac/124
0110, 0111	Reserved	

The MDC is the derivative of the application clock pclk_gmac. The management operation is performed through the gmii_mdi_i, gmii_mdo_o and gmii_mdo_o_e signals. A three-state buffer is implemented in the PAD.

The frame structure on the MDIO line is shown below.

	IDLE	PREAMBLE	START	OPCODE	PHY ADDR	REG ADDR	ТА	DATA	IDLE	
--	------	----------	-------	--------	-------------	-------------	----	------	------	--

Fig. 41-9 MDIO frame structure

IDLE:	The mdio line is three-state; there is no clock on gmii_mdc_o
PREAMBLE:	32 continuous bits of value 1
START:	Start-of-frame is 2í01
OPCODE:	2'b10 for read and 2'b01 for write
PHY ADDR:	5-bit address select for one of 32 PHYs
REG ADDR:	Register address in the selected PHY
TA:	Turnaround is 2'bZ0 for read and 2'b10 for Write
DATA:	Any 16-bit value. In a write operation, the GMAC drives mdio; in a read operation
	PHY drives it.

41.3.5 Power Management Block

Power management(PMT) supports the reception of network (remote) wake-up frames and Magic Packet frames. PMT does not perform the clock gate function, but generates interrupts for wake-up frames and Magic Packets received by the GMAC. The PMT block sits on the receiver path of the GMAC and is enabled with remote wake-up frame enable and Magic Packet enable. These enables are in the PMT control and status register and are programmed by the application.

When the power down mode is enabled in the PMT, then all received frames are dropped by the core and they are not forwarded to the application. The core comes out of the power down mode only when either a Magic Packet or a Remote Wake-up frame is received and the corresponding detection is enabled.

Remote Wake-Up Frame Detection

When the GMAC is in sleep mode and the remote wake-up bit is enabled in register GMAC_PMT_CTRL_STA (0x002C), normal operation is resumed after receiving a remote wake-up frame. The application writes all eight wake-up filter registers, by performing a sequential write to address (0028). The application enables remote wake-up by writing a 1 to bit 2 of the register GMAC_PMT_CTRL_STA.

PMT supports four programmable filters that allow support of different receive frame patterns. If the incoming frame passes the address filtering of Filter Command, and if Filter CRC-16 matches the incoming examined pattern, then the wake-up frame is received.

Filter_offset (minimum value 12, which refers to the 13th byte of the frame) determines the offset from which the frame is to be examined. Filter Byte Mask determines which bytes of the frame must be examined. The thirty-first bit of Byte Mask must be set to zero.

The remote wake-up CRC block determines the CRC value that is compared with Filter CRC-16. The wake-up frame is checked only for length error, FCS error, dribble bit error, GMII error, collision, and to ensure that it is not a runt frame. Even if the wake-up frame is more than 512 bytes long, if the frame has a valid CRC value, it is considered valid. Wake-up frame detection is updated in the register GMAC_PMT_CTRL_STA for every remote Wake-up frame received. A PMT interrupt to the application triggers a read to the GMAC_PMT_CTRL_STA register to determine reception of a wake-up frame.

Magic Packet Detection

The Magic Packet frame is based on a method that uses Advanced Micro Device's Magic Packet technology to power up the sleeping device on the network. The GMAC receives a specific packet of information, called a Magic Packet, addressed to the node on the network.

Only Magic Packets that are addressed to the device or a broadcast address will be checked to determine whether they meet the wake-up requirements. Magic Packets that pass the address filtering (unicast or broadcast) will be checked to determine whether they meet the remote Wake-on-LAN data format of 6 bytes of all ones followed by a GMAC Address appearing 16 times.

The application enables Magic Packet wake-up by writing a 1 to Bit 1 of the register GMAC_PMT_CTRL_STA. The PMT block constantly monitors each frame addressed to the node for a specific Magic Packet pattern. Each frame received is checked for a 48'hFF_FF_FF_FF_FF_FF_FF pattern following the destination and source address field. The PMT block then checks the frame for 16 repetitions of the GMAC address without any breaks or interruptions. In case of a break in the 16 repetitions of the address, the 48'hFF_FF_FF_FF_FF_FF_FF pattern is scanned for again in the incoming frame. The 16 repetitions can be anywhere in the frame, but must be preceded by the synchronization stream (48'hFF_FF_FF_FF_FF_FF_FF). The device will also accept a multicast frame, as long as the 16 duplications of the GMAC address are detected.

If the MAC address of a node is 48'h00_11_22_33_44_55, then the GMAC scans for the data sequence:

Magic Packet detection is updated in the PMT Control and Status register for Magic Packet received. A PMT interrupt to the Application triggers a read to the PMT CSR to determine whether a Magic Packet frame has been received.

41.3.6 MAC Management Counters

The counters in the MAC Management Counters (MMC) module can be viewed as an extension of the register address space of the CSR module. The MMC module maintains a set of registers for gathering statistics on the received and transmitted frames. These include a control register for controlling the behavior of the registers, two 32-bit registers containing interrupts generated (receive and transmit), and two 32-bit registers containing masks for the Interrupt register (receive and transmit). These registers are accessible from the Application through the MAC Control Interface (MCI). Non-32-bit accesses are allowed as long as the address is word-aligned.

The organization of these registers is shown in Register Description. The MMCs are accessed using transactions, in the same way the CSR address space is accessed. The Register Description in this chapter describe the various counters and list the address for each of the statistics counters. This address will be used for Read/Write accesses to the desired transmit/receive counter.

The MMC module gathers statistics on encapsulated IPv4, IPv6, TCP, UDP, or ICMP payloads in received Ethernet frames.

41.4 Register description

41.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
GMAC_MAC_CONF	0x0000	W	0x0000000	MAC Configuration Register
GMAC_MAC_FRM_FI	0x0004	W	0×00000000	MAC Frame Filter
GMAC_HASH_TAB_H I	0x0008	W	0x00000000	Hash Table High Register
GMAC_HASH_TAB_L O	0x000c	W	0x00000000	Hash Table Low Register
GMAC_GMII_ADDR	0x0010	W	0x0000000	GMII Address Register
GMAC_GMII_DATA	0x0014	W	0x0000000	GMII Data Register
GMAC_FLOW_CTRL	0x0018	W	0x0000000	Flow Control Register
GMAC_VLAN_TAG	0x001c	W	0x0000000	VLAN Tag Register
GMAC_DEBUG	0x0024	W	0x0000000	Debug register
GMAC_PMT_CTRL_S TA	0x002c	W	0x00000000	PMT Control and Status Register

FuZhou Rockchip Electronics Co.,Ltd.

Name	Offset	Size	Reset	Description
	00020		value	Tabana Daviatan
GMAC_INT_STATUS	0x0038	VV	0x00000000	Interrupt Status Register
GMAC_INT_MASK	0x003c	W	0x00000000	Interrupt Mask Register
GMAC_MAC_ADDR0_ HI	0x0040	W	0x0000ffff	MAC Address0 High Register
GMAC_MAC_ADDR0_ LO	0x0044	W	0xffffffff	MAC Address0 Low Register
GMAC_AN_CTRL	0x00c0	W	0x0000000	AN Control Register
GMAC_AN_STATUS	0x00c4	W	0x0000008	AN Status Register
GMAC_AN_ADV	0x00c8	W	0x000001e0	Auto_Negotiation Advertisement Register
GMAC_AN_LINK_PAR T_AB	0x00cc	W	0×00000000	Auto_Negotiation Link Partner Ability Register
 GMAC_AN_EXP	0x00d0	W	0×00000000	Auto_Negotiation Expansion Register
GMAC_INTF_MODE_ STA	0x00d8	W	0x00000000	RGMII Status Register
GMAC_MMC_CTRL	0x0100	W	0x0000000	MMC Control Register
GMAC_MMC_RX_INT R	0x0104	W	0×00000000	MMC Receive Interrupt Register
GMAC_MMC_TX_INT R	0x0108	w	0×0000000	MMC Transmit Interrupt Register
GMAC_MMC_RX_INT MSK	0x010c	w	0×00000000	MMC Receive Interrupt Mask Register
	0x0110	w	0x00000000	MMC Transmit Interrupt Mask Register
	0x0114	w	0×00000000	MMC TX OCTET Good and Bad Counter
GMAC_MMC_TXFRMC	0x0118	W	0×00000000	MMC TX Frame Good and Bad Counter
GMAC_MMC_TXUND FLWERR	0x0148	≷	0x00000000	MMC TX Underflow Error
GMAC_MMC_TXCARE RR	0x0160	W	0×00000000	MMC TX Carrier Error
GMAC_MMC_TXOCTE TCNT_G	0x0164	W	0x00000000	MMC TX OCTET Good Counter
GMAC_MMC_TXFRMC NT_G	0x0168	W	0×00000000	MMC TX Frame Good Counter
GMAC_MMC_RXFRM CNT_GB	0x0180	W	0x00000000	MMC RX Frame Good and Bad Counter
GMAC_MMC_RXOCTE TCNT_GB	0x0184	W	0x00000000	MMC RX OCTET Good and Bad Counter
GMAC_MMC_RXOCTE TCNT_G	0x0188	W	0x00000000	MMC RX OCTET Good Counter

Name	Offset	Size	Reset	Description
			Value	•
GMAC_MMC_RXMCF RMCNT_G	0x0190	W	0x00000000	MMC RX Mulitcast Frame Good Counter
GMAC_MMC_RXCRCE RR	0x0194	W	0×00000000	MMC RX Carrier
GMAC_MMC_RXLENE RR	0x01c8	W	0x0000000	MMC RX Length Error
GMAC_MMC_RXFIFO OVRFLW	0x01d4	W	0×00000000	MMC RX FIFO Overflow
GMAC_MMC_IPC_IN T_MSK	0x0200	W	0x00000000	MMC Receive Checksum Offload Interrupt Mask Register
GMAC_MMC_IPC_IN TR	0x0208	W	0×00000000	MMC Receive Checksum Offload Interrupt Register
GMAC_MMC_RXIPV4 GFRM	0x0210	W	0×00000000	MMC RX IPV4 Good Frame
GMAC_MMC_RXIPV4 HDERRFRM	0x0214	W	0x00000000	MMC RX IPV4 Head Error Frame
GMAC_MMC_RXIPV6 GFRM	0x0224	W	0x00000000	MMC RX IPV6 Good Frame
GMAC_MMC_RXIPV6 HDERRFRM	0x0228	w	0x0000000	MMC RX IPV6 Head Error Frame
GMAC_MMC_RXUDPE RRFRM	0x0234	w	0x0000000	MMC RX UDP Error Frame
GMAC_MMC_RXTCPE RRFRM	0x023c	w	0x00000000	MMC RX TCP Error Frame
GMAC_MMC_RXICMP ERRFRM	0x0244	w	0x0000000	MMC RX ICMP Error Frame
GMAC_MMC_RXIPV4 HDERROCT	0x0254	W	0x0000000	MMC RX OCTET IPV4 Head Error
GMAC_MMC_RXIPV6 HDERROCT	0x0268	w	0x00000000	MMC RX OCTET IPV6 Head Error
GMAC_MMC_RXUDPE RROCT	0x0274	W	0x00000000	MMC RX OCTET UDP Error
GMAC_MMC_RXTCPE RROCT	0x027c	W	0x00000000	MMC RX OCTET TCP Error
GMAC_MMC_RXICMP ERROCT	0x0284	W	0x00000000	MMC RX OCTET ICMP Error
GMAC_BUS_MODE	0x1000	W	0x00020101	Bus Mode Register
GMAC_TX_POLL_DE MAND	0x1004	W	0x00000000	Transmit Poll Demand Register
GMAC_RX_POLL_DE MAND	0x1008	W	0x00000000	Receive Poll Demand Register
GMAC_RX_DESC_LIS T_ADDR	0x100c	W	0x00000000	Receive Descriptor List Address Register

Name	Offeet	5:	Reset	Description	
Name	Unset	Size	Value	Description	
GMAC_TX_DESC_LIS	0×1010	\ \ /	0~0000000	Transmit Descriptor List	
T_ADDR	071010	vv	0,00000000	Address Register	
GMAC_STATUS	0x1014	W	0x0000000	Status Register	
GMAC_OP_MODE	0x1018	W	0x0000000	Operation Mode Register	
GMAC_INT_ENA	0x101c	W	0x0000000	Interrupt Enable Register	
GMAC_OVERFLOW_C	0x1020	w	0x00000000	Missed Frame and Buffer	
				Overnow Counter Register	
T_TIMER	0x1024	W	0x00000000	Timer Register	
GMAC_AXI_BUS_MO DE	0x1028	W	0x00110001	AXI Bus Mode Register	
GMAC_AXI_STATUS	0x102c	W	0x0000000	AXI Status Register	
GMAC_CUR_HOST_T X_DESC	0x1048	W	0x0000000	Current Host Transmit Descriptor Register	
GMAC_CUR_HOST_R X_DESC	0x104c	w	0×00000000	Current Host Receive Descriptor Register	
GMAC_CUR_HOST_T X_Buf_ADDR	0x1050	w	0x00000000	Current Host Transmit Buffer Address Register	
GMAC_CUR_HOST_R X_BUF_ADDR	0x1054	W	0x00000000	Current Host Receive Buffer Adderss Register	
GMAC_HW_FEA_REG	0x1058	w	0x000d0f17	The presence of the optional features/functions of the core	

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

41.4.2 Detail Register Description

GMAC_MAC_CONF

Address: Operational Base + offset (0x0000) MAC Configuration Register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
$\boldsymbol{\lambda}$			тс
			Transmit Configuration in RGMII/SGMII/SMII
X			When set, this bit enables the transmission of
24	RW	0x0	duplex mode, link speed, and link up/down
			information to the PHY in the RGMII ports.
			When this bit is reset, no such information is
			driven to the PHY.

Bit	Attr	Reset Value	Description
			WD
			Watchdog Disable
			When this bit is set, the GMAC disables the
			watchdog timer on the receiver, and can
23	RW	0x0	receive frames of up to 16,384 bytes.
			When this bit is reset, the GMAC allows no
			more than 2,048 bytes (10,240 if JE is set
			high) of the frame being received and cuts off
			any bytes received after that.
			JD
			Jabber Disable
			When this bit is set, the GMAC disables the
			jabber timer on the transmitter, and can
22	RW	0x0	transfer frames of up to 16,384 bytes.
			When this bit is reset, the GMAC cuts off the
			transmitter if the application sends out more
			than 2,048 bytes of data (10,240 if JE is set
			high) during transmission.
			BE
			Frame Burst Enable
21	RW	0x0	When this bit is set, the GMAC allows frame
			bursting during transmission in GMII
			Half-Duplex mode.
20	RO	0x0	reserved
			IFG
			Inter-Frame Gap
			These bits control the minimum IFG between
		· · ·	frames during transmission.
19:17	RW	0x0	3'b000: 96 bit times
			3'b001: 88 bit times
	C		3'b010: 80 bit times
			3'b111: 40 bit times
			DCRS
			Disable Carrier Sense During Transmission
~			When set high, this bit makes the MAC
			transmitter ignore the (G)MII CRS signal
			during frame transmission in Half-Duplex
16	RW	0x0	mode. This request results in no errors
			generated due to Loss of Carrier or No Carrier
			during such transmission. When this bit is low,
			the MAC transmitter generates such errors
			due to Carrier Sense and will even abort the
			transmissions.

		-
		PS
		Port Select
RW	0x0	Selects between GMII and MII:
		1'b0: GMII (1000 Mbps)
		1'b1: MII (10/100 Mbps)
		FES
		Speed
٥١٨/	0.20	Indicates the speed in Fast Ethernet (MII)
	0.00	mode:
		1'b0: 10 Mbps
		1'b1: 100 Mbps
		DO
		Disable Receive Own
		When this bit is set, the GMAC disables the
D\A/	0x0	reception of frames when the gmii_txen_o is
RVV		asserted in Half-Duplex mode.
		When this bit is reset, the GMAC receives all
		packets that are given by the PHY while
		transmitting.
		LM
		Loopback Mode
		When this bit is set, the GMAC operates in
RW	0x0	loopback mode at GMII/MII. The (G)MII
		Receive clock input (clk_rx_i) is required for
		the loopback to work properly, as the
	•	Transmit clock is not looped-back internally.
		DM
		Duplex Mode
		When this bit is set, the GMAC operates in a
RW 🔨	0x0	Full-Duplex mode where it can transmit and
		receive simultaneously. This bit is RO with
		default value of 1'b1 in Full-Duplex-only
		configuration.
	w w w	W 0x0 W 0x0 W 0x0 W 0x0

Bit	Attr	Reset Value	Description
10	RW	0×0	IPC Checksum Offload When this bit is set, the GMAC calculates the 16-bit one's complement of the one's complement sum of all received Ethernet frame payloads. It also checks whether the IPv4 Header checksum (assumed to be bytes 25-26 or 29-30 (VLAN-tagged) of the received Ethernet frame) is correct for the received frame and gives the status in the receive status word. The GMAC core also appends the 16-bit checksum calculated for the IP header datagram payload (bytes after the IPv4 header) and appends it to the Ethernet frame transferred to the application (when Type 2 COE is deselected). When this bit is reset, this function is disabled. When Type 2 COE is selected, this bit, when set, enables IPv4 checksum checking for received frame payloads TCP/UDP/ICMP headers. When this bit is reset, the COE function in the receiver is disabled and the corresponding PCE and IP HCE status bits are always cleared.
9	RW	0×0	DR Disable Retry When this bit is set, the GMAC will attempt only 1 transmission. When a collision occurs on the GMII/MII, the GMAC will ignore the current frame transmission and report a Frame Abort with excessive collision error in the transmit frame status. When this bit is reset, the GMAC will attempt retries based on the settings of BL. LUD Link Up/Down
8	RW	0×0	Indicates whether the link is up or down during the transmission of configuration in RGMII interface: 1'b0: Link Down 1'b1: Link Up

Bit	Attr	Reset Value	Description
7	RW	0×0	ACS Automatic Pad/CRC Stripping When this bit is set, the GMAC strips the Pad/FCS field on incoming frames only if the length's field value is less than or equal to 1,500 bytes. All received frames with length field greater than or equal to 1,501 bytes are passed to the application without stripping the Pad/FCS field. When this bit is reset, the GMAC will pass all incoming frames to the Host unmodified.
6:5	RW	0×0	BL Back-Off Limit The Back-Off limit determines the random integer number (r) of slot time delays (4,096 bit times for 1000 Mbps and 512 bit times for 10/100 Mbps) the GMAC waits before rescheduling a transmission attempt during retries after a collision. This bit is applicable only to Half-Duplex mode and is reserved (RO) in Full-Duplex-only configuration. 2'b00: k = min (n, 10) 2'b01: k = min (n, 8) 2'b10: k = min (n, 4) 2'b11: k = min (n, 1), where n = retransmission attempt. The random integer r takes the value in the range $0 = r < 2^k$

St.

Bit	Attr	Reset Value	Description
4	RW	0×0	DC Deferral Check When this bit is set, the deferral check function is enabled in the GMAC. The GMAC will issue a Frame Abort status, along with the excessive deferral error bit set in the transmit frame status when the transmit state machine is deferred for more than 24,288 bit times in 10/100-Mbps mode. If the Core is configured for 1000 Mbps operation, the threshold for deferral is 155,680 bits times. Deferral begins when the transmitter is ready to transmit, but is prevented because of an active CRS (carrier sense) signal on the GMII/MII. Defer time is not cumulative. If the transmitter defers for 10,000 bit times, then transmits, collides, backs off, and then has to defer again after completion of back-off, the deferral timer resets to 0 and restarts. When this bit is reset, the deferral check function is disabled and the GMAC defers until the CRS signal goes inactive.
3	RW	0×0	TE Transmitter Enable When this bit is set, the transmit state machine of the GMAC is enabled for transmission on the GMII/MII. When this bit is reset, the GMAC transmit state machine is disabled after the completion of the transmission of the current frame, and will not transmit any further frames.
2	RW	0×0	RE Receiver Enable When this bit is set, the receiver state machine of the GMAC is enabled for receiving frames from the GMII/MII. When this bit is reset, the GMAC receive state machine is disabled after the completion of the reception of the current frame, and will not receive any further frames from the GMII/MII.
1:0	RO	0x0	reserved

GMAC_MAC_FRM_FILT

Address: Operational Base + offset (0x0004) MAC Frame Filter

Bit	Attr	Reset Value	Description
			RA
			Receive All
			When this bit is set, the GMAC Receiver
			module passes to the Application all
			frames received irrespective of whether they
31	RW	0x0	pass the address filter. The result of the
			SA/DA filtering is updated (pass or fail) in the
			corresponding bits in the Receive Status
			Word. When this bit is reset, the Receiver
			module passes to the Application only those
			frames that pass the SA/DA address filter.
30:11	RO	0x0	reserved
			HPF
			Hash or Perfect Filter
			When set, this bit configures the address filter
10	RW	0×0	to pass a frame if it matches either the perfect
10			filtering or the hash filtering as set by HMC or
			HUC bits. When low and if the HUC/HMC bit is
			set, the frame is passed only if it matches the
			Hash filter.
			SAF
			Source Address Filter Enable
			The GMAC core compares the SA field of the
			received frames with the values programmed
		•	In the enabled SA registers. If the comparison
0			matches, then the SAMatch bit of RXStatus
9	RW	UXU	word is set high, when this bit is set high and
			When this hit is reset, then the GMAC Core
			forwards the received frame to the application
			and with the undated SA Match hit of the
		Y C	RyStatus depending on the SA address
			comparison
	$\mathbf{\nabla}$		SAIF
			SA Inverse Filtering
Y			When this bit is set, the Address Check block
			operates in inverse filtering mode for the SA
	D. (address comparison. The frames whose SA
8	RW	0x0	matches the SA registers will be marked as
			failing the SA Address filter.
			When this bit is reset, frames whose SA does
			not match the SA registers will be marked as
			failing the SA Address filter.

Bit	Attr	Reset Value	Description
			PCF
			Pass Control Frames
			These bits control the forwarding of all control
			frames (including unicast and multicast
			PAUSE frames). Note that the processing of
			PAUSE control frames depends only on RFE of
			Register GMAC_FLOW_CTRL[2].
			2'b00: GMAC filters all control frames from
/:6	RW	0x0	reaching the application.
			2'b01: GMAC forwards all control frames
			except PAUSE control frames to application
			even if they fail the Address filter.
			2'b10: GMAC forwards all control frames to
			application even if they fail the Address Filter.
			2'b11: GMAC forwards control frames that
			pass the Address Filter.
		0x0	DBF
			Disable Broadcast Frames
			When this bit is set, the AFM module filters all
5	RVV		incoming broadcast frames.
			When this bit is reset, the AFM module passes
			all received broadcast frames.
			РМ
			Pass All Multicast
		0×0	When set, this bit indicates that all received
4	RW		frames with a multicast destination address
			(first bit in the destination address field is '1')
			are passed.
			When reset, filtering of multicast frame
			depends on HMC bit.
	C	Y C	DAIF
			DA Inverse Filtering
			When this bit is set, the Address Check block
3	RW	0×0	operates in inverse filtering mode for the DA
			address comparison for both unicast and
			multicast frames.
			When reset, normal filtering of frames is
			performed.

Bit	Attr	Reset Value	Description
			НМС
			Hash Multicast
			When set, MAC performs destination address
			filtering of received multicast frames
2	RW	0x0	according to the hash table.
			When reset, the MAC performs a perfect
			destination address filtering for multicast
			frames, that is, it compares the DA field with
			the values programmed in DA registers.
			HUC
			Hash Unicast
			When set, MAC performs destination address
			filtering of unicast frames according to the
1	RW	0x0	hash table.
			When reset, the MAC performs a perfect
			destination address filtering for unicast
			frames, that is, it compares the DA field with
			the values programmed in DA registers.
			PR
		0x0	Promiscuous Mode
			When this bit is set, the Address Filter module
0	RW		passes all incoming frames regardless of its
			destination or source address. The SA/DA
			Filter Fails status bits of the Receive Status
			Word will always be cleared when PR is set.

GMAC_HASH_TAB_HI

Address: Operational Base + offset (0x0008) Hash Table High Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	HTH Hash Table High This field contains the upper 32 bits of Hash table

GMAC_HASH_TAB_LO

 $\mathbf{\mathbf{Y}}$

Address: Operational Base + offset (0x000c) Hash Table Low Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	HTL Hash Table Low This field contains the lower 32 bits of Hash table

GMAC_GMII_ADDR

Address: Operational Base + offset (0x0010) GMII Address Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
	RW	0x00	PA
1			Physical Layer Address
12:11			This field tells which of the 32 possible PHY
			devices are being accessed
	RW	/ 0x00	GR
10.6			GMII Register
10:0			These bits select the desired GMII register in
			the selected PHY device

Bit	Attr	Reset Value	Description
			CR
			APB Clock Range
			The APB Clock Range selection determines the
			frequency of the MDC clock as per the
			pclk_gmac frequency used in your design. The
			suggested range of pclk_gmac frequency
			applicable for each value below (when Bit[5]
			= 0) ensures that the MDC clock is
			approximately between the frequency range
			1.0 MHz - 2.5 MHz.
			Selection pclk_gmac MDC Clock
			0000 60-100 MHz 🔹 🦳 🗡
			pclk_gmac/42
			0001 100-150 MHz
			pclk_gmac/62
			0010 20-35 MHz
			pclk_gmac/16
			0011 35-60 MHz
			pclk_gmac/26
			0100 150-250 MHz
			pclk_gmac/102
5:2	RW	0x0	0101 250-300 MHz
			pcik_gmac/124
			When hit F is get you can achieve MDC cleak
		•	of frequency higher than the IEEE
			802.3 specified frequency limit of 2.5 MHz and
			program a clock divider of lower
			value For example when pclk gmac is of
			frequency 100 Mbz and you program these
			bits as "1010", then the resultant MDC clock
		Y C	will be of 12.5 Mhz which is outside the limit of
	\sim		IEEE 802.3 specified range. Please program
	\bigcirc		the values given below only if the interfacing
			chips supports faster MDC clocks.
Y			Selection MDC Clock
			1000 pclk_gmac/4
			1001 pclk_gmac/6
			1010 pclk_gmac/8
			1011 pclk_gmac/10
			1100 pclk_gmac/12
			1101 pclk_gmac/14
			1110 pclk_gmac/16
			1111 pclk_gmac/18

Bit	Attr	Reset Value	Description
1	RW	0×0	GW GMII Write When set, this bit tells the PHY that this will be a Write operation using register GMAC_GMII_DATA. If this bit is not set, this will be a Read operation, placing the data in register GMAC_GMII_DATA.
0	W1C	0×0	GB GMII Busy This bit should read a logic 0 before writing to Register GMII_ADDR and Register GMII_DATA. This bit must also be set to 0 during a Write to Register GMII_ADDR. During a PHY register access, this bit will be set to 1'b1 by the Application to indicate that a Read or Write access is in progress. Register GMII_DATA (GMII Data) should be kept valid until this bit is cleared by the GMAC during a PHY Write operation. The Register GMII_DATA is invalid until this bit is cleared by the GMAC during a PHY Read operation. The Register GMII_ADDR (GMII Address) should not be written to until this bit is cleared.

GMAC_GMII_DATA

Address: Operational Base + offset (0x0014) GMII Data Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			GD
	C	Y C	GMII Data
			This contains the 16-bit data value read from
15:0	RW	0x0000	the PHY after a Management Read
			operation or the 16-bit data value to be
			written to the PHY before a Management Write
			operation.

GMAC_FLOW_CTRL

Address: Operational Base + offset (0x0018) Flow Control Register

	Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
			PT
			Pause Time
			This field holds the value to be used in the
			Pause Time field in the transmit control frame.
	D).((If the Pause Time bits is configured to be
31:16	RW	0x0000	double-synchronized to the (G)MII clock
			domain, then consecutive writes to this
			register should be performed only after at
			least 4 clock cycles in the destination clock
			domain.
15:8	RO	0x0	reserved
			DZPO
			Disable Zero-Ouanta Pause
			When set, this bit disables the automatic
			generation of Zero-Quanta Pause Control
			frames on the deassertion of the flow-control
7	RW	0×0	signal from the FIFO layer (MTL or external
			sideband flow control signal
			sbd flowctrl i/mti flowctrl i).
			When this hit is reset, normal operation with
			automatic Zero-Quanta Pause Control frame
			generation is enabled.
6	RO	0x0	reserved
			PLT
			Pause Low Threshold
		•	This field configures the threshold of the
			PAUSE timer at which the input flow control
			signal mti_flowctrl_i (or sbd_flowctrl_i) is
			checked for automatic retransmission of
			PAUSE Frame. The threshold values should be
			always less than the Pause Time configured in
			Bits[31:16]. For example, if PT = 100H (256
		11	slot-times), and PLT = 01, then a second
			PAUSE frame is automatically transmitted if
5:4	RW	UXU	the mti_flowctrl_i signal is asserted at 228
× 1			(256-28) slot-times after the first PAUSE
			frame is transmitted.
			Selection Threshold
			00 Pause time minus 4 slot times
			01 Pause time minus 28 slot times
			10 Pause time minus 144 slot times
			11 Pause time minus 256 slot times
			Slot time is defined as time taken to transmit
			512 bits (64 bytes) on the
			GMII/MII interface.

Bit	Attr	Reset Value	Description	
3	RW	0×0	UP Unicast Pause Frame Detect When this bit is set, the GMAC will detect the Pause frames with the station's unicast address specified in MAC Address0 High Register and MAC Address0 Low Register, in addition to the detecting Pause frames with the unique multicast address. When this bit is reset, the GMAC will detect only a Pause frame with the unique multicast address specified in the 802.3x standard.	
2	RW	0×0	RFE Receive Flow Control Enable When this bit is set, the GMAC will decode the received Pause frame and disable its transmitter for a specified (Pause Time) time. When this bit is reset, the decode function of the Pause frame is disabled.	
1	RW	0×0	TFE Transmit Flow Control Enable In Full-Duplex mode, when this bit is set, the GMAC enables the flow control operation to transmit Pause frames. When this bit is reset, the flow control operation in the GMAC is disabled, and the GMAC will not transmit any Pause frames. In Half-Duplex mode, when this bit is set, the GMAC enables the back-pressure operation. When this bit is reset, the backpressure feature is disabled.	
Rock				

Bit	Attr	Reset Value	Description
			FCB_BPA
			Flow Control Busy/Backpressure Activate
			This bit initiates a Pause Control frame in
			Full-Duplex mode and activates the
			backpressure function in Half-Duplex mode if
			TFE bit is set.
			In Full-Duplex mode, this bit should be read as
			1'b0 before writing to the register
			GMAC_FLOW_CTRL. To initiate a pause
			control frame, the application must set this bit
			to 1'b1. During a transfer of the control frame,
			this bit will continue to be set to signify that a
0	RW	0x0	frame transmission is in progress. After the
			completion of Pause control frame
			transmission, the GMAC will reset this bit to
			1'b0. The register GMAC_FLOW_CTRL should
			not be written to until this bit is cleared.
			In Half-Duplex mode, when this bit is set (and
			TFE is set), then backpressure is asserted by
			the GMAC Core. During backpressure, when
			the GMAC receives a new frame, the
			transmitter starts sending a JAM pattern
			resulting in a collision. This control register bit
			is logically OR'ed with the mti_flowctrl_i input
			signal for the backpressure function.

GMAC_VLAN_TAG

Address: Operational Base + offset (0x001c) VLAN Tag Register

Bit	Attr	Reset Value	Description
31:17	RO	0x0	reserved
			ETV
		11	Enable 12-Bit VLAN Tag Comparison
			When this bit is set, a 12-bit VLAN identifier,
			rather than the complete 16-bit VLAN tag, is
			used for comparison and filtering. Bits[11:0]
16	RW	0x0	of the VLAN tag are compared with the
			corresponding field in the received
			VLAN-tagged frame.
			When this bit is reset, all 16 bits of the
			received VLAN frame's fifteenth and sixteenth
			bytes are used for comparison.

Bit	Attr	Reset Value	Description
15:0	RW	0×0000	VL VLAN Tag Identifier for Receive Frames This contains the 802.1Q VLAN tag to identify VLAN frames, and is compared to the fifteenth and sixteenth bytes of the frames being received for VLAN frames. Bits[15:13] are the User Priority, Bit[12] is the Canonical Format Indicator (CFI) and bits[11:0] are the VLAN tag's VLAN Identifier (VID) field. When the ETV bit is set, only the VID (Bits[11:0]) is used for comparison. If VL (VL[11:0] if ETV is set) is all zeros, the GMAC does not check the fifteenth and sixteenth bytes for VLAN tag comparison, and declares all frames with a Type field value of 0x8100 to be VLAN frames.

GMAC_DEBUG

Address: Operational Base + offset (0x0024) Debug_register

Bit	Attr	Reset Value	Description
31:26	RO	0x0	reserved
25	RW	0×0	TFIFO3 When high, it indicates that the MTL TxStatus FIFO is full and hence the MTL will not be accepting any more frames for transmission.
24	RW	0×0	TFIFO2 When high, it indicates that the MTL TxFIFO is not empty and has some data left for transmission.
23	RO	0x0	reserved
22	RW	0×0	7 FIFO1 When high, it indicates that the MTL TxFIFO Write Controller is active and transferring data to the TxFIFO.
21:20	RW	0×0	TFIFOSTA This indicates the state of the TxFIFO read Controller: 2'b00: IDLE state 2'b01: READ state (transferring data to MAC transmitter) 2'b10: Waiting for TxStatus from MAC transmitter 2'b11: Writing the received TxStatus or flushing the TxFIFO

Bit	Attr	Reset Value	Description
19	RW	0×0	PAUSE When high, it indicates that the MAC transmitter is in PAUSE condition (in full-duplex only) and hence will not schedule any frame for transmission
18:17	RW	0x0	TSAT This indicates the state of the MAC Transmit Frame Controller module: 2'b00: IDLE 2'b01: Waiting for Status of previous frame or IFG/backoff period to be over 2'b10: Generating and transmitting a PAUSE control frame (in full duplex mode) 2'b11: Transferring input frame for transmission
16	RW	0×0	TACT When high, it indicates that the MAC GMII/MII transmit protocol engine is actively transmitting data and not in IDLE state.
15:10	RO	0x0	reserved
9:8	RW	0×0	RFIFO This gives the status of the RxFIFO Fill-level: 2'b00: RxFIFO Empty 2'b01: RxFIFO fill-level below flow-control de-activate threshold 2'b10: RxFIFO fill-level above flow-control activate threshold 2'b11: RxFIFO Full
7	RO	0x0	reserved
6:5	RW	0x0	RFIFORD It gives the state of the RxFIFO read Controller: 2'b00: IDLE state 2'b01: Reading frame data 2'b10: Reading frame status (or time-stamp) 2'b11: Flushing the frame data and Status
4	RW	0×0	RFIFOWR When high, it indicates that the MTL RxFIFO Write Controller is active and transferring a received frame to the FIFO.
3	RO	0x0	reserved

Bit	Attr	Reset Value	Description
2:1		0×0	ACT
			When high, it indicates the active state of the
	RW		small FIFO Read and Write controllers
			respectively of the MAC receive Frame
			Controller module
0	RW	0x0	RDB
			When high, it indicates that the MAC GMII/MII
			receive protocol engine is actively
			receiving data and not in IDLE state.

GMAC_PMT_CTRL_STA

Address: Operational Base + offset (0x002c) PMT Control and Status Register

Bit	Attr	Reset Value	Description
			WFFRPR
			Wake-Up Frame Filter Register Pointer Reset
31	W1C	0x0	When set, resets the Remote Wake-up Frame
			Filter register pointer to 3'b000. It is
			automatically cleared after 1 clock cycle.
30:10	RO	0x0	reserved
			GU
			Global Unicast
9	RW	0x0	When set, enables any unicast packet filtered
			by the GMAC (DAF) address recognition to be
			a wake-up frame.
8:7	RO	0x0	reserved
			WFR
			Wake-Up Frame Received
6		0x0	When set, this bit indicates the power
0			management event was generated due to
			reception of a wake-up frame. This bit is
			cleared by a read into this register.
	\bigcirc		MPR
			Magic Packet Received
5	RC	0×0	When set, this bit indicates the power
5	i c		management event was generated by the
			reception of a Magic Packet. This bit is cleared
			by a read into this register.
4:3	RO	0x0	reserved
			WFE
			Wake-Up Frame Enable
2	RW	0×0	When set, enables generation of a power
			management event due to wake-up frame
			reception.

Bit	Attr	Reset Value	Description
1	RW	0×0	MPE Magic Packet Enable When set, enables generation of a power management event due to Magic Packet reception.
0	R/WSC	0×0	PD Power Down When set, all received frames will be dropped. This bit is cleared automatically when a magic packet or Wake-Up frame is received, and Power-Down mode is disabled. Frames received after this bit is cleared are forwarded to the application.This bit must only be set when either the Magic Packet Enable or Wake-Up Frame Enable bit is set high.
_INT_STATUS ss: Operational Base + offset (0x0038)			

GMAC_INT_STATUS

Address: Operational Base + offset (0x0038)Interrupt Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RO	0×0	MRCOIS MMC Receive Checksum Offload Interrupt Status This bit is set high whenever an interrupt is generated in the MMC Receive Checksum Offload Interrupt Register. This bit is cleared when all the bits in this interrupt register are cleared.
6	RO	0×0	MTIS MMC Transmit Interrupt Status This bit is set high whenever an interrupt is generated in the MMC Transmit Interrupt Register. This bit is cleared when all the bits in this interrupt register are cleared. This bit is only valid when the optional MMC module is selected during configuration.
5	RO	0×0	MRIS MMC Receive Interrupt Status This bit is set high whenever an interrupt is generated in the MMC Receive Interrupt Register. This bit is cleared when all the bits in this interrupt register are cleared. This bit is only valid when the optional MMC module is selected during configuration.

Bit	Attr	Reset Value	Description
			MIS
4			MMC Interrupt Status
	PO	0×0	This bit is set high whenever any of bits 7:5 is
4	κυ	0.00	set high and cleared only when all of these bits
			are low. This bit is valid only when the optional
			MMC module is selected during configuration.
			PIS
		0x0	PMT Interrupt Status
			This bit is set whenever a Magic packet or
З	PO		Wake-on-LAN frame is received in \square
5	ĸu		Power-Down mode). This bit is cleared when
			both bits[6:5] are cleared due to a read
			operation to the register
			GMAC_PMT_CTRL_STA.
2:1	RO	0x0	reserved
		0×0	RIS
0			RGMII Interrupt Status
	PO		This bit is set due to any change in value of the
	ĸŪ		Link Status of RGMIIinterface. This bit is
			cleared when the user makes a read operation
			the RGMII Status register.

GMAC_INT_MASK

Address: Operational Base + offset (0x003c) Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			PIM
			PMT Interrupt Mask
2	DW	0×0	This bit when set, will disable the assertion of
5	KW		the interrupt signal due to the setting of PMT
			Interrupt Status bit in Register
			GMAC_INT_STATUS.
2:1	RO	0x0	reserved
			RIM
	RW	0x0	RGMII Interrupt Mask
0			This bit when set, will disable the assertion of
			the interrupt signal due to the setting of
			RGMII Interrupt Status bit in Register
			GMAC_INT_STATUS.

GMAC_MAC_ADDR0_HI

Address: Operational Base + offset (0x0040) MAC Address0 High Register

Bit Attr Reset Valu

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			A47_A32
			MAC Address0 [47:32]
			This field contains the upper 16 bits (47:32) of
15:0	RW	0xffff	the 6-byte first MAC address. This is used by
			the MAC for filtering for received frames and
			for inserting the MAC address in the Transmit
			Flow Control (PAUSE) Frames.

GMAC_MAC_ADDR0_LO

Address: Operational Base + offset (0x0044) MAC Address0 Low Register

Attr	Reset Value	Description
		A31_A0
		MAC Address0 [31:0]
		This field contains the lower 32 bits of the
RW	0xfffffff	6-byte first MAC address. This is used by the
		MAC for filtering for received frames and for
		inserting the MAC address in the Transmit
		Flow Control (PAUSE) Frames.
	Attr	Attr Reset Value RW 0xfffffffff

GMAC_AN_CTRL

Address: Operational Base + offset (0x00c0) AN Control Register

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
			ANE
		CY	Auto-Negotiation Enable
12	RW	0x0	When set, will enable the GMAC to perform
			auto-negotiation with the link partner.
		YC	Clearing this bit will disable auto-negotiation.
11:10	RO	0x0	reserved
	\bigcirc		RAN
			Restart Auto-Negotiation
٥ ک		0×0	When set, will cause auto-negotiation to
9	N/ WSC	0.00	restart if the ANE is set. This bit is self-clearing
			after auto-negotiation starts. This bit should
			be cleared for normal operation.
8:0	RO	0x0	reserved

GMAC_AN_STATUS

Address: Operational Base + offset (0x00c4)

AN Status Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ANC
			Auto-Negotiation Complete
	PO	0×0	When set, this bit indicates that the
5	KU	0.00	auto-negotiation process is completed.
			This bit is cleared when auto-negotiation is
			reinitiated.
4	RO	0x0	reserved
			ANA
2	PO	0×1	Auto-Negotiation Ability
5	KU		This bit is always high, because the GMAC
			supports auto-negotiation.
			LS
			Link Status
2	R/WSC	0x0	When set, this bit indicates that the link is up.
			When cleared, this bit indicates that the link is
			down.
1:0	RO	0x0	reserved
ΔΝ ΔΙ	N		

GMAC_AN_ADV

Address: Operational Base + offset (0x00c8) Auto_Negotiation Advertisement Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			NP
15	PO		Next Page Support
13	RU	0.00	This bit is tied to low, because the GMAC does
			not support the next page.
14	RO	0x0	reserved
			RFE
			Remote Fault Encoding
13:12	RW	0x0	These 2 bits provide a remote fault encoding,
			indicating to a link partner that a fault or error
			condition has occurred.
11:9	RO	0x0	reserved
		-	PSE
			Pause Encoding
0.7		0.72	These 2 bits provide an encoding for the
0.7		0.02	PAUSE bits, indicating that the GMAC is
			capable of configuring the PAUSE function as
			defined in IEEE 802.3x.

Bit	Attr	Reset Value	Description
			HD
			Half-Duplex
G	DW/	0.1	This bit, when set high, indicates that the
0	RVV	UXI	GMAC supports Half-Duplex. This bit is tied t
			low (and RO) when the GMAC is configured for
			Full-Duplex-only operation.
5 RW		0×1	FD
	DW/		Full-Duplex
	RVV		This bit, when set high, indicates that the
			GMAC supports Full-Duplex.
4:0	RO	0x0	reserved

GMAC_AN_LINK_PART_AB

Address: Operational Base + offset (0x00cc) Auto_Negotiation Link Partner Ability Register

_ AN_LI ss: Opera	NK_PA	RT_AB ase + offset (0x Partner Ability R	00cc)
Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15	RO	0×0	NP Next Page Support When set, this bit indicates that more next page information is available. When cleared, this bit indicates that next page exchange is not desired.
14	RO	0×0	ACK Acknowledge When set, this bit is used by the auto-negotiation function to indicate that the link partner has successfully received the GMAC's base page. When cleared, it indicates that a successful receipt of the base page has not been achieved.
13:12	RO	0×0	RFE Remote Fault Encoding These 2 bits provide a remote fault encoding, indicating a fault or error condition of the link partner.
11:9	RO	0x0	reserved
8:7	RO	0×0	PSE Pause Encoding These 2 bits provide an encoding for the PAUSE bits, indicating that the link partner's capability of configuring the PAUSE function as defined in IEEE 802.3x.

Bit	Attr	Reset Value	Description
			HD
			Half-Duplex
			When set, this bit indicates that the link
6	RO	0x0	partner has the ability to operate in
			Half-Duplex mode. When cleared, the link
			partner does not have the ability to operate in
			Half-Duplex mode.
			FD
			Full-Duplex
			When set, this bit indicates that the link
5	RO	0x0	partner has the ability to operate in
			Full-Duplex mode. When cleared, the link
			partner does not have the ability to operate in
			Full-Duplex mode.
4:0	RO	0x0	reserved

GMAC_AN_EXP

Address: Operational Base + offset (0x00d0) Auto_Negotiation Expansion Register

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
			NPA
2	DO	0.40	Next Page Ability
2	RU	UXU	This bit is tied to low, because the GMAC does
			not support next page function.
			NPR
			New Page Received
1	RO	0x0	When set, this bit indicates that a new page
			has been received by the GMAC. This bit will
			be cleared when read.
0	RO	0x0	reserved

GMAC_INTF_MODE_STA

Address: Operational Base + offset (0x00d8) RGMII Status Register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3 RO		RO 0x0 LST Ink Status Indicates whether	LST
	PO		Link Status
	RU		Indicates whether the link is up (1'b1) or down
			(1'b0)

Bit	Attr	Reset Value	Description
2:1	RO	0x0	LSD
			Link Speed
			Indicates the current speed of the link:
			2'b00: 2.5 MHz
			2'b01: 25 MHz
			2'b10: 125 MHz
0	RW	0×0	LM
			Link Mode
			Indicates the current mode of operation of the
			link:
			1'b0: Half-Duplex mode
			1'b1: Full-Duplex mode

GMAC_MMC_CTRL

Address: Operational Base + offset (0x0100)MMC Control Register

_MMC_CTRL s: Operational Base + offset (0x0100)			
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0×0	FHP Full-Half preset When low and bit4 is set, all MMC counters get preset to almost-half value. All octet counters get preset to 0x7FFF_F800 (half - 2KBytes) and all frame-counters gets preset to 0x7FFF_FF0 (half - 16) When high and bit4 is set, all MMC counters get preset to almost-full value. All octet counters get preset to 0xFFFF_F800 (full - 2KBytes) and all frame-counters gets preset to 0xFFFF_FF0 (full - 16)
4	R/WSC	0×0	CP Counters Preset When set, all counters will be initialized or preset to almost full or almost half as per Bit5 above. This bit will be cleared automatically after 1 clock cycle. This bit along with bit5 is useful for debugging and testing the assertion of interrupts due to MMC counter becoming half-full or full.

Bit	Attr	Reset Value	Description
		0×0	MCF
			MMC Counter Freeze
			When set, this bit freezes all the MMC
			counters to their current value. (None of the
3	RW		MMC counters are updated due to any
			transmitted or received frame until this bit is
			reset to 0. If any MMC counter is read with the
			Reset on Read bit set, then that counter is also
			cleared in this mode.)
		0×0	ROR
			Reset on Read
	RW		When set, the MMC counters will be reset to
2			zero after Read (self-clearing after
			reset). The counters are cleared when the
			least significant byte lane (bits[7:0]) is
			read.
	RW	0×0	CSR
1			Counter Stop Rollover
			When set, counter after reaching maximum
			value will not roll over to zero
0	R/WSC	0x0	CR
			Counters Reset
			When set, all counters will be reset. This bit
			will be cleared automatically after 1
			clock cycle

GMAC_MMC_RX_INTR

Address: Operational Base + offset (0x0104) MMC Receive Interrupt Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	RW	0×0	INT21
			The bit is set when the rxfifooverflow counter
			reaches half the maximum value, and also
			when it reaches the maximum value.
20:19	RO	0x0	reserved
18	RC	0×0	INT18
			The bit is set when the rxlengtherror counter
			reaches half the maximum value, and also
			when it reaches the maximum value.
17:6	RO	0x0	reserved
5	RW	0×0	INT5
			The bit is set when the rxcrcerror counter
			reaches half the maximum value, and also
			when it reaches the maximum value.

Bit	Attr	Reset Value	Description
4	RC	0x0	INT4
			The bit is set when the rxmulticastframes_g
			counter reaches half the maximum value, and
			also when it reaches the maximum value.
3	RO	0x0	reserved
	RC	0×0	INT2
2			The bit is set when the rxoctetcount_g counter
			reaches half the maximum value, and also
			when it reaches the maximum value.
1	RC	0×0	INT1
			The bit is set when the rxoctetcount_gb
			counter reaches half the maximum value, and
			also when it reaches the maximum value.
0	RC	0x0	INTO
			The bit is set when the rxframecount_gb
			counter reaches half the maximum value, and
			also when it reaches the maximum value.

GMAC_MMC_TX_INTR

Address: Operational Base + offset (0x0108) MMC Transmit Interrupt Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21			INT21
	DC	0×0	The bit is set when the txframecount_g
	ĸĊ		counter reaches half the maximum value, and
			also when it reaches the maximum value.
	RC	0x0	INT20
20			The bit is set when the txoctetcount_g counter
20			reaches half the maximum value, and also
			when it reaches the maximum value.
		0×0	INT19
19	RC		The bit is set when the txcarriererror counter
1.			reaches half the maximum value, and also
			when it reaches the maximum value.
18:14	RO	0x0	reserved
	RC	0×0	INT13
13			The bit is set when the txunderflowerror
15			counter reaches half the maximum value, and
			also when it reaches the maximum value.
12:2	RO	0x0	reserved
1	RC	0×0	INT1
			The bit is set when the txframecount_gb
			counter reaches half the maximum value, and
			also when it reaches the maximum value.
Bit	Attr	Reset Value	Description
-----	------	-------------	---
0	RC	0×0	INTO
			The bit is set when the txoctetcount_gb
			counter reaches half the maximum value, and
			also when it reaches the maximum value.

GMAC_MMC_RX_INT_MSK

Address: Operational Base + offset (0x010c) MMC Receive Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	RW	0×0	INT21 Setting this bit masks the interrupt when the rxfifooverflow counter reaches half the maximum value, and also when it reaches the maximum value.
20:19	RO	0x0	reserved
18	RW	0x0	INT18 Setting this bit masks the interrupt when the rxlengtherror counter reaches half the maximum value, and also when it reaches the maximum value.
17:6	RO	0x0	reserved
5	RW	0×0	INT5 Setting this bit masks the interrupt when the rxcrcerror counter reaches half the maximum value, and also when it reaches the maximum value.
4	RW	0×0	INT4 Setting this bit masks the interrupt when the rxmulticastframes_g counter reaches half the maximum value, and also when it reaches the maximum value.
3	RO	0x0	reserved
2	RW	0x0	INT2 Setting this bit masks the interrupt when the rxoctetcount_g counter reaches half the maximum value, and also when it reaches the maximum value.
1	RW	0x0	INT1 Setting this bit masks the interrupt when the rxoctetcount_gb counter reaches half the maximum value, and also when it reaches the maximum value.

Bit	Attr	Reset Value	Description
			INTO
			Setting this bit masks the interrupt when the
0	RW	0x0	rxframecount_gb counter reaches half the
			maximum value, and also when it reaches the
			maximum value.

GMAC_MMC_TX_INT_MSK

Address: Operational Base + offset (0x0110) MMC Transmit Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
			Setting this bit masks the interrupt when the
21	RW	0x0	txframecount_g counter reaches half the
			maximum value, and also when it reaches the
			maximum value. 🔪 🔿 🗡
			INT20
			Setting this bit masks the interrupt when the
20	RW	0x0	txoctetcount_g counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INT19
			Setting this bit masks the interrupt when the
19	RW	0x0	txcarriererror counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
18:14	RO	0x0	reserved
		CVY	INT13
			Setting this bit masks the interrupt when the
13	RW	0x0	txunderflowerror counter reaches half the
		Y C	maximum value, and also when it reaches the
	\sim		maximum value.
12:2	RO	0x0	reserved
	-		INT1
		•	Setting this bit masks the interrupt when the
1	RW	0x0	txframecount_gb counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INTO
			Setting this bit masks the interrupt when the
0	RW	0x0	txoctetcount_gb counter reaches half the
			maximum value, and also when it reaches the
			maximum value.

GMAC_MMC_TXOCTETCNT_GB

Address: Operational Base + offset (0x0114) MMC TX OCTET Good and Bad Counter

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	txoctetcount_gb Number of bytes transmitted, exclusive of preamble and retried bytes, in good and bad frames.

GMAC_MMC_TXFRMCNT_GB

Address: Operational Base + offset (0x0118) MMC TX Frame Good and Bad Counter

Bit	Attr	Reset Value	Description
			txframecount_gb
31:0	RW	0x0000000	Number of good and bad frames transmitted,
			exclusive of retried frames.

GMAC_MMC_TXUNDFLWERR

Address: Operational Base + offset (0x0148) MMC TX Underflow Error

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	txunderflowerror Number of frames aborted due to frame underflow error.

GMAC_MMC_TXCARERR

Address: Operational Base + offset (0x0160) MMC TX Carrier Error

Bit	Attr	Reset Value	Description
		Y	txcarriererror
31:0	RW	0x0000000	Number of frames aborted due to carrier
			sense error (no carrier or loss of carrier).

GMAC_MMC_TXOCTETCNT_G

Address: Operational Base + offset (0x0164)

MMC TX OCTET Good Counter

Bit	Attr	Reset Value	Description
			txoctetcount_g
31:0	RW	0x00000000	Number of bytes transmitted, exclusive of
			preamble, in good frames only.

GMAC_MMC_TXFRMCNT_G

Address: Operational Base + offset (0x0168)

MMC TX Frame Good Counter

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txframecount_g Number of good frames transmitted.

GMAC_MMC_RXFRMCNT_GB

Address: Operational Base + offset (0x0180) MMC RX Frame Good and Bad Counter

В	it	Attr	Reset Value	Description
31:0)	RW	0×00000000	rxframecount_gb Number of good and bad frames received.

GMAC_MMC_RXOCTETCNT_GB

Address: Operational Base + offset (0x0184) MMC RX OCTET Good and Bad Counter

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	rxoctetcount_gb Number of bytes received, exclusive of preamble, in good and bad frames.

GMAC_MMC_RXOCTETCNT_G

Address: Operational Base + offset (0x0188) MMC RX OCTET Good Counter

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	rxoctetcount_g Number of bytes received, exclusive of preamble, only in good frames.

GMAC_MMC_RXMCFRMCNT_G

Address: Operational Base + offset (0x0190) MMC RX Mulitcast Frame Good Counter

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	rxmulticastframes_g Number of good multicast frames received.

GMAC_MMC_RXCRCERR

Address: Operational Base + offset (0x0194)

MMC RX Carrier

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	rxcrcerror Number of frames received with CRC error.

GMAC_MMC_RXLENERR

Address: Operational Base + offset (0x01c8)

MMC RX Length Error

Bit	Attr	Reset Value	Description
31:0		0×00000000	rxlengtherror
	RW		Number of frames received with length error
			(Length type field ≠frame size), for all frames
			with valid length field.

GMAC_MMC_RXFIFOOVRFLW

Address: Operational Base + offset (0x01d4) MMC RX FIFO Overflow

Bit	Attr	Reset Value	Description
			rxfifooverflow
31:0	RW	0x00000000	Number of missed received frames due to
			FIFO overflow.

GMAC_MMC_IPC_INT_MSK

Address: Operational Base + offset (0x0200) MMC Receive Checksum Offload Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			INT29
			Setting this bit masks the interrupt when the
29	RW	0x0	rxicmp_err_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
28	RO	0x0	reserved
			INT27
			Setting this bit masks the interrupt when the
27	RW	0x0	rxtcp_err_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
26	RO	0x0	reserved
			INT25
			Setting this bit masks the interrupt when the
25	RW	0x0	rxudp_err_octets counter reaches half the
		rU'.	maximum value, and also when it reaches the
			maximum value.
24:23	RO	0x0	reserved
			INT22
	\bigcirc		Setting this bit masks the interrupt when the
22	RW	0x0	rxipv6_hdrerr_octets counter reaches half the
		·	maximum value, and also when it reaches the
			maximum value.
21:18	RO	0x0	reserved
			INT17
			Setting this bit masks the interrupt when the
17	RW	0x0	rxipv4_hdrerr_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
16:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			INT13
			Setting this bit masks the interrupt when the
13	RW	0x0	rxicmp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
12	RO	0x0	reserved
			INT11
			Setting this bit masks the interrupt when the
11	RW	0x0	rxtcp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
10	RO	0x0	reserved •
			INT9
			Setting this bit masks the interrupt when the
9	RW	0x0	rxudp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
8:7	RO	0x0	reserved
			INT6
			Setting this bit masks the interrupt when the
6	RW	0x0	rxipv6_hdrerr_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INT5
			Setting this bit masks the interrupt when the
5	RW	0x0	rxipv6_gd_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
4:2	RO	0x0	reserved
			INT1
	C	Y C	Setting this bit masks the interrupt when the
1	RW	0x0	rxipv4_hdrerr_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INTO
~			Setting this bit masks the interrupt when the
0	RW	0x0	rxipv4_gd_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.

GMAC_MMC_IPC_INTR

Address: Operational Base + offset (0x0208) MMC Receive Checksum Offload Interrupt Register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			INT29
20	DC	00	The bit is set when the rxicmp_err_octets
29	RC	UXU	counter reaches half the maximum value, and
			also when it reaches the maximum value.
28	RO	0x0	reserved
			INT27
27	DC	00	The bit is set when the rxtcp_err_octets
27	RC	UXU	counter reaches half the maximum value, and
			also when it reaches the maximum value.
26	RO	0x0	reserved
			INT25
25	DC	00	The bit is set when the rxudp_err_octets
25	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
24:23	RO	0x0	reserved
			INT22
22	D .C		The bit is set when the rxipv6_hdrerr_octets
22	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
21:18	RO	0x0	reserved
			INT17
			The bit is set when the rxipv4_hdrerr_octets
17	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
16:14	RO	0x0	reserved
			INT13
13	DC	0x0	The bit is set when the rxicmp_err_frms
	RC		counter reaches half the maximum value, and
			also when it reaches the maximum value.
12	RO	0x0	reserved
			INT11
			The bit is set when the rxtcp_err_frms counter
11	RC	UXU	reaches half the maximum value, and also
			when it reaches the maximum value.
10	RO	0x0	reserved
			INT9
0			The bit is set when the rxudp_err_frms
9	RC	UXU	counter reaches half the maximum value, and
			also when it reaches the maximum value.
8:7	RO	0x0	reserved
			INT6
c		0.40	The bit is set when the rxipv6_hdrerr_frms
σ	RC	0×0	counter reaches half the maximum value, and
			also when it reaches the maximum value.

Bit	Attr	Reset Value	Description
			INT5
5	PC	0×0	The bit is set when the rxipv6_gd_frms
5	κc	0.00	counter reaches half the maximum value, and
			also when it reaches the maximum value.
4:2	RO	0x0	reserved
	RC	0×0	INT1
1			The bit is set when the rxipv4_hdrerr_frms
Ţ			counter reaches half the maximum value, and
			also when it reaches the maximum value.
			INTO
0	RC	0x0	The bit is set when the rxipv4_gd_frms
			counter reaches half the maximum value, and
			also when it reaches the maximum value.

GMAC_MMC_RXIPV4GFRM

Address: Operational Base + offset (0x0210) MMC RX IPV4 Good Frame

Bit	Attr	Reset Value	Description
			rxipv4_gd_frms
31:0	RW	0x00000000	Number of good IPv4 datagrams received with
			the TCP, UDP, or ICMP payload

GMAC_MMC_RXIPV4HDERRFRM

Address: Operational Base + offset (0x0214) MMC RX IPV4 Head Error Frame

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	rxipv4_hdrerr_frms Number of IPv4 datagrams received with header (checksum, length, or version mismatch) errors

GMAC_MMC_RXIPV6GFRM

Address: Operational Base + offset (0x0224)

MMC RX IPV6 Good Frame

Bit	Attr	Reset Value	Description
			rxipv6_gd_frms
31:0	RW	0x00000000	Number of good IPv6 datagrams received with
			TCP, UDP, or ICMP payloads.

GMAC_MMC_RXIPV6HDERRFRM

Address: Operational Base + offset (0x0228)

MMC RX IPV6 Head Error Frame

Bit	Attr	Reset Value	Description
21.0		0,00000000	rxipv6_hdrerr_frms
51.0	ĸvv	0x00000000	header errors (length or version mismatch).

GMAC_MMC_RXUDPERRFRM

Address: Operational Base + offset (0x0234) MMC RX UDP Error Frame

Bit	Attr	Reset Value	Description
			rxudp_err_frms
31:0	RW	0x00000000	Number of good IP datagrams whose UDP
			payload has a checksum error.

GMAC_MMC_RXTCPERRFRM

Address: Operational Base + offset (0x023c) MMC RX TCP Error Frame

	Bit	Attr	Reset Value	Description
31	:0	RW	0×00000000	rxtcp_err_frms Number of good IP datagrams whose TCP payload has a checksum error.

GMAC_MMC_RXICMPERRFRM

Address: Operational Base + offset (0x0244)

MMC RX ICMP Error Frame

Bit	Attr	Reset Value	Description
		•	rxicmp_err_frms
31:0	RW	0x0000000	Number of good IP datagrams whose ICMP
			payload has a checksum error.

GMAC_MMC_RXIPV4HDERROCT

Address: Operational Base + offset (0x0254) MMC RX OCTET IPV4 Head Error

Bit	Attr	Reset Value	Description
	$\mathbf{\mathcal{O}}$		rxipv4_hdrerr_octets
			Number of bytes received in IPv4 datagrams
31:0	RW	0x00000000	with header errors (checksum, length, version
			mismatch). The value in the Length field of
			IPv4 header is used to update this counter.

GMAC_MMC_RXIPV6HDERROCT

Address: Operational Base + offset (0x0268)

MMC RX OCTET IPV6 Head Error

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			rxipv6_hdrerr_octets
			Number of bytes received in IPv6 datagrams
31:0	RW	0x00000000	with header errors (length, version
			mismatch). The value in the IPv6 header's
			Length field is used to update this counter.

GMAC_MMC_RXUDPERROCT

Address: Operational Base + offset (0x0274) MMC RX OCTET UDP Error

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	rxudp_err_octets Number of bytes received in a UDP segment
			that had checksum errors.

GMAC_MMC_RXTCPERROCT

Address: Operational Base + offset (0x027c) MMC RX OCTET TCP Error

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	rxtcp_err_octets Number of bytes received in a TCP segment with checksum errors.

GMAC_MMC_RXICMPERROCT

Address: Operational Base + offset (0x0284)

MMC RX OCTET ICMP Error

Bit	Attr	Reset Value	Description
		\sim	rxicmp_err_octets
31:0	RW	0x0000000	Number of bytes received in an ICMP segment
			with checksum errors.

GMAC_BUS_MODE

Address: Operational Base + offset (0x1000)

Bus Mode Register

Bit	Attr	Reset Value	Description
31:26	RO	0x0	reserved
		0×0	AAL
			Address-Aligned Beats
25	RW		When this bit is set high and the FB bit equals
			1, the AXI interface generates all bursts
			aligned to the start address LS bits. If the FB
			bit equals 0, the first burst (accessing the data
			buffer's start address) is not aligned, but
			subsequent bursts are aligned to the address.

Bit	Attr	Reset Value	Description
24	RW	0×0	PBL_Mode 8xPBL Mode When set high, this bit multiplies the PBL value programmed (bits [22:17] and bits [13:8]) eight times. Thus the DMA will transfer data in to a maximum of 8, 16, 32, 64, 128, and 256 beats depending on the PBL value.
23	RW	0×0	USP Use Separate PBL When set high, it configures the RxDMA to use the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is applicable to TxDMA operations only. When reset to low, the PBL value in bits [13:8] is applicable for both DMA engines.
22:17	RW	0x01	RPBL RxDMA PBL These bits indicate the maximum number of beats to be transferred in one RxDMA transaction. This will be the maximum value that is used in a single block Read/Write. The RxDMA will always attempt to burst as specified in RPBL each time it starts a Burst transfer on the host bus. RPBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior.These bits are valid and applicable only when USP is set high.
16	RW	0×0	FB Fixed Burst This bit controls whether the AXI Master interface performs fixed burst transfers or not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AXI will use SINGLE and INCR burst transfer operations.
15:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			PBL
			Programmable Burst Length
			These bits indicate the maximum number of
			beats to be transferred in one DMA
			transaction. This will be the maximum value
			that is used in a single block Read/Write.
			The DMA will always attempt to burst as
			specified in PBL each time it starts a Burst
			transfer on the host bus. PBL can be
			programmed with permissible values of 1, 2,
			4, 8, 16, and 32. Any other value will result in
			undefined behavior. When USP is set high,this
			PBL value is applicable for TxDMA transactions
			only.
			The PBL values have the following limitations.
12.0	DW	001	The maximum number of beats (PBL) possible
13:8	RW	0x01	IS limited by the size of the TX FIFO and RX
			on the DMA. The EIEO has a constraint that
			the maximum best supported is half the depth
			of the EIEO except when specified (as given
			below) For different data bus widths and FIFO
			sizes the valid PBL range (including x8 mode)
			is provided in the following table. If the PBL is
			common for both transmit and receive DMA,
		•	the minimum Rx FIFO and Tx FIFO depths
			must be considered. Do not program
			out-of-range PBL values, because the system
		CY	may not behave properly.
			For TxFIFO, valid PBL range in full duplex
			mode and duplex mode is 128 or less.
			For RxFIFO, valid PBL range in full duplex
	\bigcirc		mode is all.
7	RO	0x0	reserved
			DSL
			Descriptor Skip Length
			This bit specifies the number of Dword to skip
			between two unchained descriptors. The
6:2	RW	0x00	address skipping starts from the end of
			current descriptor to the start of next
			descriptor. When DSL value equals zero, then
			the DMA in Ding reads
-			the DMA, in King mode.
11	кO	UXU	reserved

Bit	Attr	Reset Value	Description	
0	R/WSC	0×1	SWR Software Reset When this bit is set, the MAC DMA Controller resets all GMAC Subsystem internal registers and logic. It is cleared automatically after the reset operation has completed in all of the core clock domains. Read a 0 value in this bit before re-programming any register of the core. Note: The reset operation is completed only when all the resets in all the active clock domains are de-asserted. Hence it is essential that all the PHY inputs clocks (applicable for the selected PHY interface) are present for software reset completion.	
_TX_POLL_DEMAND				
ss: Opera	s: Operational Base + offset (0x1004)			

GMAC_TX_POLL_DEMAND

Address: Operational Base + offset (0x1004) Transmit Poll Demand Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	TPD Transmit Poll Demand When these bits are written with any value, the DMA reads the current descriptor pointed to by Register GMAC_CUR_HOST_TX_DESC. If that descriptor is not available (owned by Host), transmission returns to the Suspend state and DMA Register GMAC_STATUS[2] is asserted. If the descriptor is available, transmission resumes.

٢.

GMAC_RX_POLL_DEMAND

Address: Operational Base + offset (0x1008) Receive Poll Demand Register

Bit	Attr	Reset Value	Description
<i>•</i>			RPD
			Receive Poll Demand
	RO	0x00000000	When these bits are written with any value,
			the DMA reads the current descriptor pointed
21.0			to by Register GMAC_CUR_HOST_RX_DESC.
51:0			If that descriptor is not available (owned by
			Host), reception returns to the Suspended
			state and Register GMAC_STATUS[7] is not
			asserted. If the descriptor is available, the
			Receive DMA returns to active state.

GMAC_RX_DESC_LIST_ADDR

Address: Operational Base + offset (0x100c) Receive Descriptor List Address Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	SRL Start of Receive List This field contains the base address of the First Descriptor in the Receive Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) will be ignored and taken as all-zero by the DMA internally. Hence these LSB bits are
			Read Only.

GMAC_TX_DESC_LIST_ADDR

Address: Operational Base + offset (0x1010) Transmit Descriptor List Address Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	STL Start of Transmit List This field contains the base address of the First Descriptor in the Transmit Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) will be ignored and taken as all-zero by the DMA internally. Hence these LSB bits are Read Only.

GMAC_STATUS

Address: Operational Base + offset (0x1014) Status Register

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			GPI
	\bigcirc		GMAC PMT Interrupt
			This bit indicates an interrupt event in the
			GMAC core's PMT module. The software must
28	RO	0x0	read the corresponding registers in the GMAC
			core to get the exact cause of interrupt and
			clear its source to reset this bit to 1'b0. The
			interrupt signal from the GMAC subsystem
			(sbd_intr_o) is high when this bit is high.

7

Bit	Attr	Reset Value	Description
27	RO	0×0	GMI GMAC MMC Interrupt This bit reflects an interrupt event in the MMC module of the GMAC core. The software must read the corresponding registers in the GMAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the GMAC subsystem (sbd_intr_o) is high when this bit is high.
26	RO	0×0	GLI GMAC Line interface Interrupt This bit reflects an interrupt event in the GMAC Core's PCS or RGMII interface block. The software must read the corresponding registers in the GMAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the GMAC subsystem (sbd intr o) is high when this bit is high.
25:23	RO	0x0	EB Error Bits These bits indicate the type of error that caused a Bus Error (e.g., error response on the AXI interface). Valid only with Fatal Bus Error bit (Register GMAC_STATUS[13]) set. This field does not generate an interrupt. Bit 23: 1'b1 Error during data transfer by TxDMA 1'b0 Error during data transfer by RxDMA Bit 24: 1'b1 Error during read transfer 1'b0 Error during write transfer Bit 25: 1'b1 Error during descriptor access 1'b0 Error during data buffer access

Bit	Attr	Reset Value	Description
Bit	RO	Reset Value 0×0	TS Transmit Process State These bits indicate the Transmit DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped; Reset or Stop Transmit Command issued. 3'b001: Running; Fetching Transmit Transfer Descriptor. 3'b010: Running; Waiting for status. 3'b010: Running; Reading Data from host memory buffer and queuing it to transmit buffer (Tx FIFO). 3'b100: TIME_STAMP write state. 3'b101: Reserved for future use. 3'b110: Suspended; Transmit Descriptor Unavailable or Transmit Buffer Underflow. 3'b111: Running: Closing Transmit
19:17	RO	0×0	Descriptor. RS Receive Process State These bits indicate the Receive DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped: Reset or Stop Receive Command issued. 3'b001: Running: Fetching Receive Transfer Descriptor. 3'b010: Reserved for future use. 3'b011: Running: Waiting for receive packet. 3'b101: Running: Waiting for receive packet. 3'b101: Suspended: Receive Descriptor Unavailable. 3'b101: Running: Closing Receive Descriptor. 3'b110: TIME_STAMP write state. 3'b111: Running: Transferring the receive packet data from receive buffer to host memory.

Bit	Attr	Reset Value	Description
			NIS
			Normal Interrupt Summary
			Normal Interrupt Summary bit value is the
			logical OR of the following when the
			corresponding interrupt bits are enabled in
			Register OP_MODE:
			Register GMAC_STATUS[0]: Transmit
		0×0	Interrupt
			Register GMAC_STATUS[2]: Transmit Buffer
16	W1C		Unavailable
			Register GMAC_STATUS[6]: Receive
			Interrupt
			Register GMAC_STATUS[14]: Early Receive
			Interrupt
			Only unmasked bits affect the Normal
			Interrupt Summary bit.
			This is a sticky bit and must be cleared (by
			writing a 1 to this bit) each time a
			corresponding bit that causes NIS to be set is

Bit	Attr	Reset Value	Description
			AIS
			Abnormal Interrupt Summary
			Abnormal Interrupt Summary bit value is the
			logical OR of the following when the
			corresponding interrupt bits are enabled in
			Register OP_MODE:
			Register GMAC_STATUS[1]: Transmit Process
			Stopped
			Register GMAC_STATUS[3]: Transmit Jabber
			Timeout
			Register GMAC_STATUS[4]: Receive FIFO
			Overflow
			Register GMAC_STATUS[5]: Transmit
15	W1C	0x0	Underflow
			Register GMAC_STATUS[7]: Receive Buffer
			Register GMAC_STATUS[8]: Receive Process
			Stopped
			Register GMAC_STATUS[9]: Receive
			Register CMAC STATUS[10]: Early Transmit
			Interrupt
			Provision GMAC STATUS[13]: Estal Bus Error
			Only unmasked hits affect the Abnormal
			Interrunt Summary hit
			This is a sticky bit and must be cleared each
			time a corresponding bit that causes AIS to be
			set is cleared.
		CY	ERI
			Early Receive Interrupt
1.4		0x0	This bit indicates that the DMA had filled the
14	WIC		first data buffer of the packet. Receive
	\sim		Interrupt Register GMAC_STATUS[6]
			automatically clears this bit.
			FBI
			Fatal Bus Error Interrupt
13	W1C	0×0	This bit indicates that a bus error occurred, as
13	WIC	0x0	detailed in [25:23]. When this bit is set, the
			corresponding DMA engine disables all its bus
			accesses.
12:11	RO	0x0	reserved
			ETI
			Early Transmit Interrupt
10	W1C	.C 0x0	This bit indicates that the frame to be
			transmitted was fully transferred to the MTL
			Transmit FIFO.

Bit	Attr	Reset Value	Description
			RWT
9	W1C	0×0	Receive Watchdog Timeout
	WIC	0.0	This bit is asserted when a frame with a length
			greater than 2,048 bytes is received.
			RPS
0	W1C	0.20	Receive Process Stopped
0	WIC	UXU	This bit is asserted when the Receive Process
			enters the Stopped state.
			RU
			Receive Buffer Unavailable
			This bit indicates that the Next Descriptor in
			the Receive List is owned by the host and
			cannot be acquired by the DMA. Receive
			Process is suspended. To resume processing
_			Receive descriptors, the host should change
/	WIC	0×0	the ownership of the descriptor and issue a
			Receive Poll Demand command. If no Receive
			Poll Demand is issued, Receive Process
			resumes when the next recognized incoming
			frame is received. Register GMAC STATUS[7]
			is set only when the previous Receive
			Descriptor was owned by the DMA.
			RI
		0×0	Receive Interrupt
~	W1C		This bit indicates the completion of frame
6			reception. Specific frame status information
			has been posted in the descriptor. Reception
			remains in the Running state.
			UNF
			Transmit Underflow
-			This bit indicates that the Transmit Buffer had
5	WIC	0x0	an Underflow during frame transmission.
	\bigcap		Transmission is suspended and an Underflow
$\boldsymbol{\lambda}$			Error TDES0[1] is set.
			OVF
X			Receive Overflow
			This bit indicates that the Receive Buffer had
4	W1C	1C 0x0	an Overflow during frame reception. If the
			partial frame is transferred to application, the
			overflow status is set in RDES0[11].

Bit	Attr	Reset Value	Description
			ТЈТ
			Transmit Jabber Timeout
			This bit indicates that the Transmit Jabber
2	W1C	0.40	Timer expired, meaning that the transmitter
5	WIC	UXU	had been excessively active. The transmission
			process is aborted and placed in the Stopped
			state. This causes the Transmit Jabber
			Timeout TDES0[14] flag to assert.
			TU
			Transmit Buffer Unavailable 💦 📐
		0x0	This bit indicates that the Next Descriptor in
	W1C		the Transmit List is owned by the host and
			cannot be acquired by the DMA. Transmission
2			is suspended. Bits[22:20] explain the
			Transmit Process state transitions. To resume
			processing transmit descriptors, the host
			should change the ownership of the bit of the
			descriptor and then issue a Transmit Poll
			Demand command.
		0x0	TPS
1	W1C		Transmit Process Stopped
1			This bit is set when the transmission is
			stopped.
			П
0			Transmit Interrupt
	W1C	0x0	This bit indicates that frame transmission is
			finished and TDES1[31] is set in the First
			Descriptor.

GMAC_OP_MODE

Address: Operational Base + offset (0x1018) Operation Mode Register

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
			DT
			Disable Dropping of TCP/IP Checksum Error
			Frames
			When this bit is set, the core does not drop
			frames that only have errors detected by the
26	RW	0x0	Receive Checksum Offload engine. Such
			frames do not have any errors (including FCS
			error) in the Ethernet frame received by the
			MAC but have errors in the encapsulated
			payload only. When this bit is reset, all error
			frames are dropped if the FEF bit is reset.

Bit	Attr	Reset Value	Description
			RSF
			Receive Store and Forward
			When this bit is set, the MTL only reads a
25	DW	0.20	frame from the Rx FIFO after the complete
25	K VV	0.00	frame has been written to it, ignoring RTC
			bits. When this bit is reset, the Rx FIFO
			operates in Cut-Through mode, subject to the
			threshold specified by the RTC bits.
			DFF
			Disable Flushing of Received Frames
24	RW	0×0	When this bit is set, the RxDMA does not flush
27		0,0	any frames due to the unavailability of receive
			descriptors/buffers as it does normally when
			this bit is reset.
23:22	RO	0x0	reserved
			TSF
			Transmit Store and Forward
			When this bit is set, transmission starts when
21	RW	0×0	a full frame resides in the MTL Transmit FIFO.
			When this bit is set, the TTC values specified
			In Register GMAC_OP_MODE[16:14] are
			Ignored. This bit should be changed only when
			FIF
			When this hit is set, the transmit FIFO
			controller logic is reset to its default values
			and thus all data in the Tx FIFO is lost/flushed
			This bit is cleared internally when the flushing
	C		operation is completed fully. The Operation
		1C 0x0	Mode register should not be written to until
			this bit is cleared. The data which is already
20			accepted by the MAC transmitter will not be
20	WIC		flushed. It will be scheduled for transmission
			and will result in underflow and runt frame
× 1			transmission.
			Note: The flush operation completes only after
			emptying the TxFIFO of its contents and all
			the pending Transmit Status of the
			transmitted frames are accepted by the host.
			In order to complete this flush operation, the
			PHY transmit clock (clk_tx_i) is required to be
			active.
19:17	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ттс
			Transmit Threshold Control
			These three bits control the threshold level of
			the MTL Transmit FIFO. Transmission starts
			when the frame size within the MTL Transmit
			FIFO is larger than the threshold. In addition,
			full frames with a length less than the
			threshold are also transmitted. These bits are
16:14	RW	0x0	used only when the TSF bit (Bit 21) is reset.
			3'b000: 64
			3'b001: 128
			3'b010: 192
			3'b011: 256
			3'b100: 40
			3'b101: 32
			3'b110: 24
			3'b111: 16

.

r c c

Bit	Attr	Reset Value	Description
			ST
			Start/Stop Transmission Command
			When this bit is set, transmission is placed in
			the Running state, and the DMA checks the
			Transmit List at the current position for a
			frame to be transmitted. Descriptor
			acquisition is attempted either from the
			current position in the list, which is the
			Transmit List Base Address set by Register
			GMAC_TX_DESC_LIST_ADDR, or from the
			position retained when transmission was
			stopped previously. If the current descriptor is
			not owned by the DMA, transmission enters
			the Suspended state and Transmit Buffer
10		0.20	Unavailable (Register GMAC_STATUS[2]) is
13		0.00	set. The Start Transmission command is
			effective only when transmission is stopped. If
			the command is issued before setting DMA
			Register TX_DESC_LIST_ADDR, then the DMA
			behavior is unpredictable.
			When this bit is reset, the transmission
			process is placed in the Stopped state after
			completing the transmission of the current
			frame. The Next Descriptor position in the
			Transmit List is saved, and becomes the
			current position when transmission is
			restarted. The stop transmission command is
			effective only the transmission of the current
			frame is complete or when the transmission is
			in the Suspended state.
			RFD
			Threshold for deactivating flow control (in
			both HD and FD)
			These bits control the threshold (Fill-level of
			Rx FIFO) at which the flow-control is
12:11	RW	0x0	deasserted after activation.
			2'b00: Full minus 1 KB
			2'b01: Full minus 2 KB
			2'b10: Full minus 3 KB
			2'b11: Full minus 4 KB
			Note that the deassertion is effective only
			after flow control is asserted.

Bit	Attr	Reset Value	Description
			RFA
			Threshold for activating flow control (in both
			HD and FD)
			These bits control the threshold (Fill level of
			Rx FIFO) at which flow control is activated.
10:9	RW	0x0	2'b00: Full minus 1 KB
			2'b01: Full minus 2 KB
			2'b10: Full minus 3 KB
			2'b11: Full minus 4 KB
			Note that the above only applies to Rx FIFOs
			of 4 KB or more when the EFC bit is set high.
			EFC • Y
			Enable HW flow control
8	RW	0x0	When this bit is set, the flow control signal
Ũ			operation based on fill-level of Rx FIFO is
			enabled. When reset, the flow control
			operation is disabled.
			FEF
			Forward Error Frames
			When this bit is reset, the Rx FIFO drops
			frames with error status (CRC error, collision
			error, GMII_ER, giant frame, watchdog
			timeout, overflow). However, if the frame's
			start byte (write) pointer is already
7	RW	0x0	transferred to the read controller side (in
			Threshold mode), then the frames are not
			dropped.
		Y	When FEF is set, all frames except runt error
			frames are forwarded to the DMA. But when
			RxFIFO overflows when a partial frame is
	C	Y C	written, then such frames are dropped even
			when FEF is set.
			Forward Undersized Good Frames
			When set, the Rx FIFO will forward Undersized
	DW		trames (trames with no Error and length less
б	RW	UXU	than 64 bytes) including pad-bytes and CRC).
			when reset, the KX FIFO will drop all frames of
			less than 64 bytes, unless it is already
			transferred due to lower value of Receive
			Inreshold (e.g., $RIC = 01$).
5	RO	10x0	reserved

Bit	Attr	Reset Value	Description
			RTC
			Receive Threshold Control
			These two bits control the threshold level of
			the MTL Receive FIFO. Transfer (request) to
			DMA starts when the frame size within the
			MTL Receive FIFO is larger than the threshold.
			In addition, full frames with a length less than
			the threshold are transferred automatically.
4:3	RW	0x0	Note that value of 11 is not applicable if the
			configured Receive FIFO size is 128 bytes.
			These bits are valid only when the RSF bit is
			zero, and are ignored when the RSF bit is set
			to 1.
			2'b00: 64
			2'b01: 32
			2'b10: 96
			2'b11: 128
			OSF
			Operate on Second Frame
2	RW	0x0	When this bit is set, this bit instructs the DMA
			to process a second frame of Transmit data
			even before status for first frame is obtained.

L'

Bit	Attr	Reset Value	Description
			SR
			Start/Stop Receive
			When this bit is set, the Receive process is
			placed in the Running state. The DMA
			attempts to acquire the descriptor from the
			Receive list and processes incoming frames.
			Descriptor acquisition is attempted from the
			current position in the list, which is the
			address set by register
			GMAC_RX_DESC_LIST_ADDR or the position
			retained when the Receive process was
			previously stopped. If no descriptor is owned
			by the DMA, reception is suspended and
			Receive Buffer Unavailable (Register
1	RW	0x0	GMAC_STATUS[7]) is set. The Start Receive
			command is effective only when reception has
			stopped. If the command was issued before
			setting register
			GMAC_RX_DESC_LIST_ADDR, DMA behavior
			is unpredictable.
			when this bit is cleared, RXDMA operation is
			stopped after the transfer of the current
			Possive list is saved and becomes the surrent
			Receive list is saved and becomes the current
		•	The Stop Receive command is effective only
			when the Receive process is in either the
			Running (waiting for receive packet) or in the
		c > r	Suspended state.
0	RO 🔨	0x0	reserved

GMAC_INT_ENA

Address: Operational Base + offset (0x101c) Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:17	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			NIE
			Normal Interrupt Summary Enable
			When this bit is set, a normal interrupt is
			enabled. When this bit is reset, a normal
			interrupt is disabled. This bit enables the
			following bits:
			Register GMAC STATUS[0]: Transmit
16	RW	0x0	Interrupt
			Register GMAC STATUS[2]: Transmit Buffer
			Unavailable
			Register GMAC_STATUS[6]: Receive
			Interrupt
			Register GMAC_STATUS[14]: Early Receive
			Interrupt
			AIE
			Abnormal Interrupt Summary Enable
		W 0×0	When this bit is set, an Abnormal Interrupt is
			enabled. When this bit is reset, an
			Abnormal Interrupt is disabled. This bit
			enables the following bits
			Register GMAC_STATUS[1]: Transmit Process
			Stopped
			Register GMAC_STATUS[3]: Transmit Jabber
			Timeout
4.5			Register GMAC_STATUS[4]: Receive Overflow
15	RW		Register GMAC_STATUS[5]: Transmit
			Underflow
			Register GMAC_STATUS[7]: Receive Buffer
			Unavailable
			Register GMAC_STATUS[8]: Receive Process
			Stopped
			Register GMAC_STATUS[9]: Receive
	\frown		Watchdog Timeout
$\boldsymbol{\lambda}$		$\langle \cdot \rangle$	Register GMAC_STATUS[10]: Early Transmit
			Interrupt
Y			Register GMAC_STATUS[13]: Fatal Bus Error
			ERE
			Early Receive Interrupt Enable
14	RW	0×0	When this bit is set with Normal Interrupt
14			Summary Enable (BIT 16), Early Receive
			Interrupt is enabled. When this bit is reset,
			Early Receive Interrupt is disabled.

Bit	Attr	Reset Value	Description
			FBE
			Fatal Bus Error Enable
10		00	When this bit is set with Abnormal Interrupt
13	RW	UXU	Summary Enable (BIT 15), the Fatal Bus Error
			Interrupt is enabled. When this bit is reset,
			Fatal Bus Error Enable Interrupt is disabled.
12:11	RO	0x0	reserved
			ETE
			Early Transmit Interrupt Enable
			When this bit is set with an Abnormal
10	RW	0x0	Interrupt Summary Enable (BIT 15), Early
			Transmit Interrupt is enabled. When this bit is
			reset, Early Transmit Interrupt is disabled.
			RWE
			Receive Watchdog Timeout Enable
			When this bit is set with Abnormal Interrupt
9	RW	0x0	Summary Enable (BIT 15), the Receive
-		UNC	Watchdog Timeout Interrupt is enabled. When
			this hit is reset. Receive
			Watchdog Timeout Interrupt is disabled
			RSL Bacaiva Stannad Enable
			When this hit is get with Abnormal Interrupt
8	RW	0x0	Summany Enable (PIT 15) Descrive Stenned
			Interrupt is applied. When this hit is react
		•	Interrupt is enabled. When this bit is reset,
			RUE Dessive Ruffer Unavailable Enable
	RW	0x0	Neceive Buller Ollavallable Ellable
7			Cummony Enable (BIT 15) Descrive Buffer
/			Summary Enable (BIT 15), Receive Burler
			is react, the Descive Ruffer Uppysilable
			Is reset, the Receive burier Unavailable
		•	Receive Interrupt Enable
6	RW	0x0	when this bit is set with Normal Interrupt
			Summary Enable (BIT 16), Receive Interrupt
			is enabled. When this bit is reset, Receive
			Interrupt is disabled.
		0x0	Underflow Interrupt Enable
5	RW		When this bit is set with Abnormal Interrupt
			Summary Enable (BIT 15), Transmit
			Underflow Interrupt is enabled. When this bit
			is reset, Underflow Interrupt is disabled.

Bit	Attr	Reset Value	Description
			OVE
			Overflow Interrupt Enable
4	RW/	0×0	When this bit is set with Abnormal Interrupt
-		0.0	Summary Enable (BIT 15), Receive Overflow
			Interrupt is enabled. When this bit is reset,
			Overflow Interrupt is disabled
			ТЈЕ
			Transmit Jabber Timeout Enable
			When this bit is set with Abnormal Interrupt
3	RW	0x0	Summary Enable (BIT 15), Transmit Jabber
			Timeout Interrupt is enabled. When this bit is
			reset, Transmit Jabber Timeout Interrupt is
			disabled.
			TUE
		0×0	Transmit Buffer Unavailable Enable
_			When this bit is set with Normal Interrupt
2	RW		Summary Enable (BIT 16), Transmit Buffer
			Unavailable Interrupt is enabled. When this bit
			is reset, Transmit Buffer Unavailable Interrupt
	RW	0×0	ISE Transmit Ctanned Enable
			When this bit is set with Apparmal Interrupt
1			Summary Enable (BIT 15) Transmission
1			Stopped Interrupt is enabled. When this hit is
			reset Transmission Stopped Interrupt is
			disabled
			TIF
		CY	Transmit Interrupt Enable
0	RW	0×0	When this bit is set with Normal Interrupt
			Summary Enable (BIT 16), Transmit Interrupt
			is enabled. When this bit is reset, Transmit
	\cap		Interrupt is disabled.
	1		

GMAC_OVERFLOW_CNT Address: Operational Base + offset (0x1020) Missed Frame and Buffer Overflow Counter Register

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28	RC	0x0	FIFO_overflow_bit
			Overflow bit for FIFO Overflow Counter

Bit	Attr	Reset Value	Description
			Frame_miss_number
			Indicates the number of frames missed by the
			application
27:17	RC	0x000	This counter is incremented each time the MTL
			asserts the sideband signal mtl_rxoverflow_o.
			The counter is cleared when this register is
			read with mci_be_i[2] at 1'b1.
16	RC	0×0	Miss_frame_overflow_bit
			Overflow bit for Missed Frame Counter
			Frame_miss_number_2
	RC	0×0000	Indicates the number of frames missed by the
			controller due to the Host Receive Buffer being
15:0			unavailable. This counter is incremented each
			time the DMA discards an incoming frame.
			The counter is cleared when this register is
			read with mci_be_i[0] at 1'b1.

GMAC_REC_INT_WDT_TIMER

Address: Operational Base + offset (0x1024) Receive Interrupt Watchdog Timer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			RIWT
			RI Watchdog Timer count
			Indicates the number of system clock cycles
			multiplied by 256 for which the watchdog
			timer is set. The watchdog timer gets
			triggered with the programmed value after
			the RxDMA completes the transfer of a frame
7:0	RW	0x00	for which the RI status bit is not set due to
	C	YC	the setting in the corresponding descriptor
			RDES1[31]. When
			the watch-dog timer runs out, the RI bit is set
			and the timer is stopped. The watchdog timer
			is reset when RI bit is set high due to
			automatic setting of RI as per RDES1[31] of
			any received frame.

GMAC_AXI_BUS_MODE

Address: Operational Base + offset (0x1028) AXI Bus Mode Register

Bit Attr	Reset Value	Description
----------	-------------	-------------

Bit	Attr	Reset Value	Description
			EN_LPI
			Enable LPI (Low Power Interface)
			When set to 1, enable the LPI (Low Power
			Interface) supported by the GMAC and
31	RW	0x0	accepts the LPI request from the AXI System
			Clock controller.
			When set to 0, disables the Low Power Mode
			and always denies the LPI request
			from the AXI System Clock controller.
			UNLCK_ON_MGK_RWK
			Unlock on Magic Packet or Remote Wake Up
			When set to 1, enables it to request coming
20		0.40	out of Low Power mode only when Magic
30	RW	UXU	Packet or Remote Wake Up Packet is received.
			When set to 0, enables it requests to come out
			of Low Power mode when any frame is
			received.
29:22	RO	0x0	reserved
			WR_OSR_LMT
			AXI Maximum Write Out Standing Request
			Limit
21:20	RW	0x1	This value limits the maximum outstanding
			request on the AXI write interface.
			Maximum outstanding requests =
			WR_OSR_LMT+1
19:18	RO	0x0	reserved
			RD_OSR_LMT
			AXI Maximum Read Out Standing Request
			Limit
17:16	RW	0x1	This value limits the maximum outstanding
	C	Y C	request on the AXI read interface.
			Maximum outstanding requests =
			RD_OSR_LMT+1
15:13	RO	0x0	reserved
		-	AXI_AAL
			Address-Aligned Beats
12		0.20	Provide the stream of the second stream of the seco
	KU		Registeru (register GMAC_BUS_MUDE[25]).
			when this bit set to 1, it performs
			audiess-aligned burst transfers on both read
11.4		0.40	and write channels.
111:4	KU	υχυ	reserved

Bit	Attr	Reset Value	Description
			BLEN16
2		0.40	AXI Burst Length 16
3	RW	UXU	When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 16.
			BLEN8
2		0.20	AXI Burst Length 8
Z	RW	UXU	When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 8.
			BLEN4
1	DW	0~0	AXI Burst Length 4
1	r vv	UXU	When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 4.
			UNDEF
			AXI Undefined Burst Length
			This bit is read-only bit and indicates the
		RO 0x1	complement (invert) value of FB bit in
			register GMAC_BUS_MODE[16].
			When this bit is set to 1, it is allowed to
0	RO		perform any burst length equal to or below the
			maximum allowed burst length as
			programmed in bits[7:1];
			When this bit is set to 0, the it is allowed to
			perform only fixed burst lengths as indicated
			by BLEN256/128/64/32/16/8/4, or a burst
			length of 1.

GMAC_AXI_STATUS

Address: Operational Base + offset (0x102c) AXI Status Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			RD_CH_STA
1	RO	0x0	When high, it indicates that AXI Master's read
			channel is active and transferring data.
			WR_CH_STA
0	RO	0x0	When high, it indicates that AXI Master's write
			channel is active and transferring data.

GMAC_CUR_HOST_TX_DESC

Address: Operational Base + offset (0x1048)

Current Host Transmit Descriptor Register

Bit	Attr	Reset Value	Description
-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	HTDAP
			Host Transmit Descriptor Address Pointer
			Cleared on Reset. Pointer updated by DMA
			during operation.

GMAC_CUR_HOST_RX_DESC

Address: Operational Base + offset (0x104c) Current Host Receive Descriptor Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	HRDAP
			Host Receive Descriptor Address Pointer
			Cleared on Reset. Pointer updated by DMA
			during operation.

GMAC_CUR_HOST_TX_Buf_ADDR

Address: Operational Base + offset (0x1050) Current Host Transmit Buffer Address Register

Bit	Attr	Reset Value	Description				
31:0	RO	0×00000000	НТВАР				
			Host Transmit Buffer Address Pointer				
			Cleared on Reset. Pointer updated by DMA				
			during operation.				

GMAC_CUR_HOST_RX_BUF_ADDR

Address: Operational Base + offset (0x1054) Current Host Receive Buffer Adderss Register

Bit	Attr	Reset Value	Description
31:0	RO	0×0000000	HRBAP Host Receive Buffer Address Pointer Cleared on Reset. Pointer updated by DMA during operation.

GMAC_HW_FEA_REG

Address: Operational Base + offset (0x1058) The presence of the optional features/functions of the core Register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	Reserved
24	RO	0x0	Alternate (Enhanced Descriptor)
23:20	RO	0x0	Reserved
19	RO	0x1	RxFIFO > 2048 Bytes
18	RO	0x1	IP Checksum Offload (Type 2) in Rx
17	RO	0x0	IP Checksum Offload (Type 1) in Rx
16	RO	0x1	Checksum Offload in Tx
15:14	RO	0x0	Reserved
13	RO	0x0	IEEE 1588-2008 Advanced Time-Stamp

Bit	Attr	Reset Value	Description
12	RO	0x0	IEEE 1588-2002 Time-Stamp
11	RO	0x1	RMON module
10	RO	0x1	PMT Magic Packet
9	RO	0x1	PMT Remote Wakeup
8	RO	0x1	SMA (MDIO) Interface
7	RO	0x0	Reserved
6	RO	0x0	PCS registers (TBI/SGMII/RTBI PHY interface)
5	RO	0x0	Multiple MAC Address Registers
4	RO	0x1	HASH Filter
3	RO	0x0	Reserved
2	RO	0x1	Half-Duplex support
1	RO	0x1	1000 Mbps support
0	RO	0x1	10/100 Mbps support

41.5 Interface Description

Table 41-1 RMII Interface Description

Module pin name	Direction	Pad name	томих			
		RMII int	erface			
mac_clk	I/O	GPIO4_A[3]	GRF_GPIO4AL_IOMUX[14:12]=3'b011			
mac_txen	0	GPIO4_A[4]	GRF_GPIO4AH_IOMUX[2:0]=3'b011			
mac_txd1	0	GPIO3_D[5]	GRF_GPIO3DH_IOMUX[6:4]=3'b011			
mac_txd0	0	GPIO3_D[4]	GRF_GPIO3DH_IOMUX[2:0]=3'b011			
mac_rxdv	Ι	GPIO4_A[1]	GRF_GPIO4AL_IOMUX[6:4]=3'b011			
mac_rxer	Ι	GPIO4_A[2]	GRF_GPIO4AL_IOMUX[10:8]=3'b011			
mac_rxd1	Ι	GPIO3_D[7]	GRF_GPIO3DH_IOMUX[14:12]=3'b011			
mac_rxd0	Ι	GPIO3_D[6]	_GRF_GPIO3DH_IOMUX[10:8]=3'b011			
Management interface						
mac_mdio	I/O	GPIO4_A[5]	GRF_GPIO4AH_IOMUX[5:4]=2'b11			
mac_mdc	0	GPIO4_A[0]	GRF_GPIO4AL_IOMUX[1:0]=2'b11			

Table 41-2 RGMII Interface Description

Module pin name	Direction	Pad name	ΙΟΜUΧ			
		RGMII/RMI	I interface			
mac_clk	I/O	GPIO4_A[3]	GRF_GPIO4AL_IOMUX[14:12]=3'b011			
mac_txclk	0	GPIO4_B[1]	GRF_GPIO4BL_IOMUX[6:4]=3'b011			
mac_txen	0	GPIO4_A[4]	GRF_GPIO4AH_IOMUX[2:0]=3'b011			
mac_txd3	0	GPIO3_D[1]	GRF_GPIO3DL_IOMUX[6:4]=3'b011			
mac_txd2	0	GPIO3_D[0]	GRF_GPIO3DL_IOMUX[2:0]=3'b011			
mac_txd1	0	GPIO3_D[5]	GRF_GPIO3DH_IOMUX[6:4]=3'b011			
mac_txd0	0	GPIO3_D[4]	GRF_GPIO3DH_IOMUX[2:0]=3'b011			
mac_rxclk	Ι	GPIO4_A[6]	GRF_GPIO4AH_IOMUX[10:8]=3'b011			
mac_rxdv	Ι	GPIO4_A[1]	GRF_GPIO4AL_IOMUX[6:4]=3'b011			
mac_rxd3	Ι	GPIO3_D[3]	GRF_GPIO3DL_IOMUX[14:12]=3'b011			
mac_rxd2	Ι	GPIO3_D[2]	GRF_GPIO3DL_IOMUX[10:8]=3'b011			
mac_rxd1	Ι	GPIO3_D[7]	GRF_GPIO3DH_IOMUX[14:12]=3'b011			
mac_rxd0	Ι	GPIO3_D[6]	GRF_GPIO3DH_IOMUX[10:8]=3'b011			
mac_crs	Ι	GPIO4_A[7]	GRF_GPIO4AH_IOMUX[14:12]=3'b011			

FuZhou Rockchip Electronics Co.,Ltd.

mac_col	Ι	GPIO4_B[0]	GRF_GPIO4BL_IOMUX[2:0]=3'b011	
Management interface				
mac_mdio	I/O	GPIO4_A[5]	GRF_GPIO4AH_IOMUX[5:4]=2'b11	
mac_mdc	0	GPIO4_A[0]	GRF_GPIO4AL_IOMUX[1:0]=2'b11	

41.6 Application Notes

41.6.1 Descriptors

The DMA in GMAC can communicate with Host driver through descriptor lists and data buffers. The DMA transfers data frames received by the core to the Receive Buffer in the Host memory, and Transmit data frames from the Transmit Buffer in the Host memory. Descriptors that reside in the Host memory act as pointers to these buffers.

There are two descriptor lists; one for reception, and one for transmission. The base address of each list is written into DMA Registers RX_DESC_LIST_ADDR and TX_DESC_LIST_ADDR, respectively. A descriptor list is forward linked (either implicitly or explicitly). The last descriptor may point back to the first entry to create a ring structure. Explicit chaining of descriptors is accomplished by setting the second address chained in both Receive and Transmit descriptors (RDES1[24] and TDES1[24]). The descriptor lists resides in the Host physical memory address space. Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically addressed, rather than contiguous buffers in memory.

A data buffer resides in the Host physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data, buffer status is maintained in the descriptor. Data chaining refers to frames that span multiple data buffers. However, a single descriptor cannot span multiple frames. The DMA will skip to the next frame buffer when end-of-frame is detected. Data chaining can be enabled or disabled

Fig. 41-10 Descriptor Ring and Chain Structure

Each descriptor contains two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory management schemes. The descriptor addresses must be aligned to the bus width used (Word/Dword/Lword for 32/64/128-bit buses).

	63 55	47	39	31	23	15	7	0
DES1-DES0	Control Bits [9:0]	Byte Count Buffer2 [10:0]	Byte Count Buffer1[10:0]	O W N		Status [30:0]		
DES3-DES2	Buffer2 Address [31:0] / Next Descriptor Address [31:0]				Buf	fer1 Address[31	:0]	

Fig. 41-11 Rx/Tx Descriptors definition

41.6.2 Receive Descriptor

The GMAC Subsystem requires at least two descriptors when receiving a frame. The Receive state machine of the DMA always attempts to acquire an extra descriptor in anticipation of an incoming frame. (The size of the incoming frame is unknown). Before the RxDMA closes a descriptor, it will attempt to acquire the next descriptor even if no frames are received.

In a single descriptor (receive) system, the subsystem will generate a descriptor error if the receive buffer is unable to accommodate the incoming frame and the next descriptor is not owned by the DMA. Thus, the Host is forced to increase either its descriptor pool or the buffer size. Otherwise, the subsystem starts dropping all incoming frames.

Receive Descriptor 0 (RDES0)

RDES0 contains the received frame status, the frame length, and the descriptor ownership information.

Bit	Description
31	OWN: Own Bit When set, this bit indicates that the descriptor is owned by the DMA of the GMAC
	Subsystem. When this bit is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame reception or
	when the buffers that are associated with this descriptor are full.
30	AFM: Destination Address Filter Fail
29.16	FI - Frame Length
23.10	These bits indicate the byte length of the received frame that was transferred to host memory (including CRC). This field is valid when Last Descriptor (RDES0[8]) is set and either the Descriptor Error (RDES0[14]) or Overflow Error bits are are reset. The
	checksum calculation (Type 1) is enabled and the received frame is not a MAC control frame.
	This field is valid when Last Descriptor (RDES0[8]) is set. When the Last Descriptor and Error Summary bits are not set, this field indicates the accumulated number of bytes that have been transferred for the current frame.
15	ES: Error Summary
	• RDES0[0]: Payload Checksum Error
	RDES0[1]: CRC Error
	RDES0[3]: Receive Error
	RDES0[4]: Watchdog Timeout
	RDES0[6]: Late Collision
	RDES0[7]: IPC Checksum
	RDESU[11]: Overflow Error PDESU[14]: Descriptor Error
	This field is valid only when the Last Descriptor (RDES0[8]) is set.
14	DE: Descriptor Error
	When set, this bit indicates a frame truncation caused by a frame that does not fit within the current descriptor buffers, and that the DMA does not own the Next

Table 41-3 Receive Descriptor 0
	Descriptor. The frame is truncated. This field is valid only when the Last Descriptor (RDES0[8]) is set
13	SAF: Source Address Filter Fail
10	When set, this bit indicates that the SA field of frame failed the SA Filter in the GMAC
	Core.
12	LE: Length Error
	When set, this bit indicates that the actual length of the frame received and that the
	Length/ Type field does not match. This bit is valid only when the Frame Type
	(RDES0[5]) bit is reset. Length error status is not valid when CRC error is present.
11	OE: Overflow Error
	When set, this bit indicates that the received frame was damaged due to buffer
	overflow.
10	VLAN: VLAN Tag
	When set, this bit indicates that the frame pointed to by this descriptor is a VLAN
	frame tagged by the GMACCore.
9	FS: First Descriptor
	When set, this bit indicates that this descriptor contains the first buffer of the frame.
	If the size of the first buffer is 0, the second buffer contains the beginning of the
	frame. If the size of the second buffer is also 0, the next Descriptor contains the
	beginning of the frame.
8	LS: Last Descriptor
	When set, this bit indicates that the buffers pointed to by this descriptor are the last
	buffers of the frame.
7	IPC Checksum Error/Giant Frame
	When IP Checksum Engine is enabled, this bit, when set, indicates that the 16-bit
	IPv4 Header checksum calculated by the core did not match the received checksum
	bytes. The Error Summary bit[15] is NOT set when this bit is set in this mode.
6	LC: Late Collision
	when set, this bit indicates that a late collision has occurred while receiving the frame
5	When set, this hit indicates that the Perceive Frame is an Ethernet-type frame (the LT
	field is greater than or equal to 16'h0600). When this hit is reset, it indicates that the
	received frame is an IEEE802 3 frame. This bit is not valid for Runt frames less than
	14 hytes
4	RWT: Receive Watchdog Timeout
	When set, this bit indicates that the Receive Watchdog Timer has expired while
	receiving the current frame and the current frame is truncated after the Watchdog
	Timeout.
3	RE: Receive Error
	When set, this bit indicates that the gmii_rxer_i signal is asserted while gmii_rxdv_i is
	asserted during frame reception. This error also includes carrier extension error in
	GMII and Half-duplex mode. Error can be of less/no extension, or error (rxd \neq 0f)
	during extension.
2	DE: Dribble Bit Error
	When set, this bit indicates that the received frame has a non-integer multiple of
	bytes (odd nibbles). This bit is valid only in MII Mode.
1	CE: CRC Error
	When set, this bit indicates that a Cyclic Redundancy Check (CRC) Error occurred on
	the received frame. This field is valid only when the Last Descriptor (RDES0[8]) is set.
0	Rx MAC Address/Payload Checksum Error
	when set, this bit indicates that the Rx MAC Address registers value (1 to 15) matched
	the frame's DA field. When reset, this bit indicates that the Rx MAC Address Register
	U value matched the DA field.
	I Full Checksum Official Engine is enabled, this bit, when set, indicates the ICP, UDP,
	IDP or ICMP segment's Checksum field. This hit is also set when the received number
	I ODI, OF TOME SEGMENTS CHECKSUITHER. THIS DIT IS AND SET WHEN THE RELEIVED NUMBER

of payload bytes does not match the value indicated in the Length field of the encapsulated IPv4 or IPv6 datagram in the received Ethernet frame.

Receive Descriptor 1 (RDES1)

RDES1 contains the buffer sizes and other bits that control the descriptor chain/ring.

Table 41-4 Receive Descriptor 1

Bit	Description	
31	Disable Interrupt on Completion	
	When set, this bit will prevent the setting of the RI (CSR5[6]) bit of the GMAC_STATUS	
	Register for the received frame that ends in the buffer pointed to by this descriptor.	
	This, in turn, will disable the assertion of the interrupt to Host due to RI for that frame.	
30:26	Reserved.	
25	RER: Receive End of Ring	
	When set, this bit indicates that the descriptor list reached its final descriptor. The	
24	DMA returns to the base address of the list, creating a Descriptor Ring.	
24	RCH: Second Address Chained	
	When set, this bit indicates that the second address in the descriptor is the Next	
	Descriptor address rather than the second burler address. When RDES1[24] is set,	
	RDES1[25] takes precedence over RDES1[24]	
23.22	2 Pecerved	
23.22	11 DBS2: Deceive Buffer 2 Size	
~	These bits indicate the second data buffer size in bytes. The buffer size must be a	
	multiple of 8 depending upon the bus widths (64), even if the value of RDES3 (buffer2	
	address pointer) is not	
	aligned to bus width. In the case where the buffer size is not a multiple of 8, the	
	resulting behavior is undefined. This field is not valid if RDES1[24] is set.	
10:0	RBS1: Receive Buffer 1 Size	
	Indicates the first data buffer size in bytes. The buffer size must be a multiple of 8	
	depending upon the bus widths (64), even if the value of RDES2 (buffer1 address	
	pointer) is not aligned. In the case where the buffer size is not a multiple of 8, the	
	resulting behavior is undefined. If this field is 0, the DMA ignores this buffer and uses	
	Buffer 2 or next descriptor depending on the value of RCH (Bit 24).	

Receive Descriptor 2 (RDES2)

RDES2 contains the address pointer to the first data buffer in the descriptor.

5	Table 41-5	Receive	Descriptor 2	
4				

Bit	Description
31:0	Buffer 1 Address Pointer
	These bits indicate the physical address of Buffer 1. There are no limitations on the
	buffer address alignment except for the following condition: The DMA uses the
	configured value for its address generation when the RDES2 value is used to store the
	start of frame. Note that the DMA performs a write operation with the RDES2[2:0] bits
	as 0 during the transfer of the start of frame but the frame data is shifted as per the
	actual Buffer address pointer. The DMA ignores RDES2[2:0] (corresponding to bus
	width of 64) if the address pointer is to a buffer where the middle or last part of the
	frame is stored.

Receive Descriptor 3 (RDES3)

RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor.

Bit	Description
31:0	Buffer 2 Address Pointer (Next Descriptor Address) These bits indicate the physical address of Buffer 2 when a descriptor ring structure is used. If the Second Address Chained (RDES1[24]) bit is set, this address contains the pointer to the physical memory where the Next Descriptor is present. If RDES1[24] is set, the buffer (Next Descriptor) address pointer must be bus width-aligned (RDES3[2:0] = 0, corresponding to a bus width of 64. LSBs are ignored internally.) However, when RDES1[24] is reset, there are no limitations on the RDES3 value, except for the following condition: The DMA uses the configured value for its buffer address generation when the RDES3 value is used to store the start of frame. The DMA ignores RDES3[2:0] (corresponding to a bus width of 64) if the address pointer is to a buffer
	where the middle or last part of the frame is stored.

Table 41-6 Receive Descriptor 3

41.6.3 Transmit Descriptor

The descriptor addresses must be aligned to the bus width used (64). Each descriptor is provided with two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory-management schemes.

Transmit Descriptor 0 (TDES0)

TDES0 contains the transmitted frame status and the descriptor ownership information.

Bit	Description
31	OWN: Own Bit
	When set, this bit indicates that the descriptor is owned by the DMA. When this bit is
	reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this
	bit either when it completes the frame
	transmission or when the buffers allocated in the descriptor are empty. The ownership
	bit of the First Descriptor of the frame should be set after all subsequent descriptors
	set. This avoids a possible race condition between fetching a descriptor and the driver
	setting an ownership bit
30:17	Reserved.
16	IHE: IP Header Error
	When set, this bit indicates that the Checksum Offload engine detected an IP header
	error and consequently did not modify the transmitted frame for any checksum
	insertion.
15	ES: Error Summary
	Indicates the logical OR of the following bits:
	TDES0[14]: Jabber Timeout
	TDES0[13]: Frame Flush
	TDES0[11]: Loss of Carrier
	TDES0[10]: No Carrier
	TDES0[9]: Late Collision
	IDES0[8]: Excessive Collision
	TDES0[2]: Excessive Deferral
	TDES0[1]: Underflow Error

Table 41-7 Transmit Descriptor 0

14	JT: Jabber Timeout
	When set, this bit indicates the GMAC transmitter has experienced a jabber time-out.
13	FF: Frame Flushed
	When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush
	command given by the CPU.
12	PCE: Payload Checksum Error
	This bit, when set, indicates that the Checksum Offload engine had a failure and did
	not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure
	can be either due to insufficient bytes, as
	indicated by the IP Header's Payload Length field, or the MTL starting to forward the
	frame to the MAC transmitter in Store-and-Forward mode without the checksum
	naving been calculated yet. This second error
	Ethernet frame being transmitted, to avoid deadlock, the MTL starts forwarding the
	frame when the ETEO is full, even in Store and Forward mode
11	I C: Loss of Carrier
11	When set this hit indicates that Loss of Carrier occurred during frame transmission
	This is valid only for the frames transmitted without collision and when the GMAC
	operates in Half-Duplex Mode.
10	NC: No Carrier
10	When set, this bit indicates that the carrier sense signal form the PHY was not
	asserted during transmission.
9	LC: Late Collision
	When set, this bit indicates that frame transmission was aborted due to a collision
	occurring after the collision window (64 byte times including Preamble in RMII Mode
	and 512 byte times including Preamble and Carrier Extension in RGMII Mode). Not
	valid if Underflow Error is set.
8	EC: Excessive Collision
	When set, this bit indicates that the transmission was aborted after 16 successive
	collisions while attempting to transmit the current frame. If the DR (Disable Retry) bit
	In the GMAC configuration Register is set, this bit is set after the first consider and the transmission of the frame is aborted
7	
/	When set, this hit indicates that the transmitted frame was a VI AN-type frame
6.3	CC: Collision Count
0.5	This 4-bit counter value indicates the number of collisions occurring before the frame
	was transmitted. The count is not valid when the Excessive Collisions bit (TDES0[8])
	is set.
2	ED: Excessive Deferral
	When set, this bit indicates that the transmission has ended because of excessive
	deferral of over 24,288 bit times (155,680 bits times in 1000-Mbps mode) if the
	Deferral Check (DC) bit is set high in the GMAC Control Register.
1	UF: Underflow Error
	When set, this bit indicates that the GMAC aborted the frame because data arrived
	late from the Host memory. Underflow Error indicates that the DMA encountered an
	empty Transmit Buffer while transmitting the
	Trame. The transmission process enters the suspended state and sets both Transmit
	GMAC STATUS [0])
0	DR: Deferred Rit
0	When set this hit indicates that the GMAC defers before transmission because of the
	presence of carrier. This hit is valid only in Half-Dupley mode
	presence of carrier this sie is valid only in than Duplex model

Transmit Descriptor 1 (TDES1)

TDES1 contains the buffer sizes and other bits which control the descriptor chain/ring and the

frame being transferred.

Table 41-8 Transmit Descriptor 1

Bit	Description
31	IC: Interrupt on Completion When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame has been transmitted.
30	LS: Last Segment When set, this bit indicates that the buffer contains the last segment of the frame.
29	FS: First Segment When set, this bit indicates that the buffer contains the first segment of a frame.
28:27	 CIC: Checksum Insertion Control These bits control the insertion of checksums in Ethernet frames that encapsulate TCP, UDP, or ICMP over IPv4 or IPv6 as described below. 2'b00: Do nothing. Checksum Engine is bypassed 2'b01: Insert IPv4 header checksum. Use this value to insert IPv4 header checksum when the frame encapsulates an IPv4 datagram. 2'b10: Insert TCP/UDP/ICMP checksum. The checksum is calculated over the TCP, UDP, or ICMP segment only and the TCP, UDP, or ICMP pseudo-header checksum is assumed to be present in the corresponding input frame's Checksum field. An IPv4 header checksum is also inserted if the encapsulated datagram conforms to IPv4. 2'b11: Insert a TCP/UDP/ICMP checksum that is fully calculated in this engine. In other words, the TCP, UDP, or ICMP pseudo-header is included in the checksum calculation, and the input frame's corresponding Checksum field has an all-zero value. An IPv4 Header checksum is also inserted if the encapsulated datagram conforms to IPv4. The Checksum engine detects whether the TCP, UDP, or ICMP segment is encapsulated in IPv4 or IPv6 and processes its data accordingly.
26	DC: Disable CRC When set, the GMAC does not append the Cyclic Redundancy Check (CRC) to the end of the transmitted frame. This is valid only when the first segment (TDES1[29])
25	TER: Transmit End of Ring When set, this bit indicates that the descriptor list reached its final descriptor. The returns to the base address of the list, creating a descriptor ring.
24	TCH: Second Address Chained When set, this bit indicates that the second address in the descriptor is the Next Descriptor address rather than the second buffer address. When TDES1[24] is set, TBS2 (TDES1[21–11]) are "don't care" values. TDES1[25] takes precedence over TDES1[24].
23	DP: Disable Padding When set, the GMAC does not automatically add padding to a frame shorter than 64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame shorter than 64 bytes and the CRC field is added despite the state of the DC (TDES1[26]) bit. This is valid only when the first segment (TDES1[29]) is set.
22 21:11	Reserved. TBS2: Transmit Buffer 2 Size These bits indicate the Second Data Buffer in bytes. This field is not valid if TDES1[24] is set.
10:0	TBS1: Transmit Buffer 1 Size These bits indicate the First Data Buffer byte size. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of TCH (Bit 24).

Transmit Descriptor 2 (TDES2)

TDES2 contains the address pointer to the first buffer of the descriptor.

Table 41-9 Transmit Descriptor 2

Bit	Description
31:0	Buffer 1 Address Pointer
	These bits indicate the physical address of Buffer 1. There is no limitation on the buffer
	address alignment.

Transmit Descriptor 3 (TDES3)

TDES3 contains the address pointer either to the second buffer of the descriptor or the next descriptor.

Table 41-10 Transmit Descriptor 3

Bit	Description
31:0	Buffer 2 Address Pointer (Next Descriptor Address)
	Indicates the physical address of Buffer 2 when a descriptor ring structure is used. If
	the Second Address Chained (TDES1[24]) bit is set, this address contains the pointer
	to the physical memory where the Next
	Descriptor is present. The buffer address pointer must be aligned to the bus width only
	when TDES1[24] is set. (LSBs are ignored internally.)

41.6.4 Programming Guide

DMA Initialization – Descriptors

The following operations must be performed to initialize the DMA.

1. Provide a software reset. This will reset all of the GMAC internal registers and logic. (GMAC_OP_MODE[0]).

2. Wait for the completion of the reset process (poll GMAC_OP_MODE[0], which is only cleared after the reset operation is completed).

3. Program the following fields to initialize the Bus Mode Register by setting values in register GMAC_BUS_MODE

- a. Mixed Burst and AAL
- b. Fixed burst or undefined burst
- c. Burst length values and burst mode values.
- d. Descriptor Length (only valid if Ring Mode is used)
- e. Tx and Rx DMA Arbitration scheme

4. Program the AXI Interface options in the register GMAC_BUS_MODE

a. If fixed burst-length is enabled, then select the maximum burst-length possible on the AXI bus (Bits[7:1])

5. A proper descriptor chain for transmit and receive must be created. It should also ensure that the receive descriptors are owned by DMA (bit 31 of descriptor should be set). When OSF mode is used, at least two descriptors are required.

6. Software should create three or more different transmit or receive descriptors in the chain before reusing any of the descriptors.

7. Initialize receive and transmit descriptor list address with the base address of transmit and receive descriptor (register GMAC_RX_DESC_LIST_ADDR and GMAC_TX_DESC_LIST_ADDR).

8. Program the following fields to initialize the mode of operation by setting values in register

GMAC_OP_MODE

- a. Receive and Transmit Store And Forward
- b. Receive and Transmit Threshold Control (RTC and TTC)
- c. Hardware Flow Control enable

d. Flow Control Activation and De-activation thresholds for MTL Receive and Transmit FIFO (RFA and RFD)

e. Error Frame and undersized good frame forwarding enable

f. OSF Mode

9. Clear the interrupt requests, by writing to those bits of the status register (interrupt bits only) which are set. For example, by writing 1 into bit 16 - normal interrupt summary will clear this bit (register GMAC_STATUS).

10. Enable the interrupts by programming the interrupt enable register GMAC_INT_ENA.

11. Start the Receive and Transmit DMA by setting SR (bit 1) and ST (bit 13) of the control register GMAC_OP_MODE.

MAC Initialization

The following MAC Initialization operations can be performed after the DMA initialization sequence. If the MAC Initialization is done before the DMA is set-up, then enable the MAC receiver (last step below) only after the DMA is active. Otherwise, received frames will fill the RxFIFO and overflow. Steps (1) and (2) are to be followed if the TBI/SGMII/RTBI PHY interface is enabled, otherwise follow steps (3) and (4).

1. Program the AN Control register GMAC_AN_CTRL to enable Auto-negotiation ANE (bit-12). Setting ELE (bit-14) of this register will enable the PHY to loop back the transmit data.

2. Check the AN Status Register GMAC_AN_STATUS for completion of the Auto-negotiation process. ANC (bit-5) should be set, and link status (bit-2), when set, indicates that the link is up.

3. Program the register GMAC_GMII_ADDR for controlling the management cycles for external PHY, for example, Physical Layer Address PA (bits 15-11). Also set bit 0 (GMII Busy) for writing into PHY and reading from PHY.

4. Read the 16-bit data of (GMAC_GMII_DATA) from the PHY for link up, speed of operation, and mode of operation, by specifying the appropriate address value in register GMAC_GMII_ADDR (bits 15-11).

5. Provide the MAC address registers (GMAC_MAC_ADDR0_HI and GMAC_MAC_ADDR0_LO). If more than one MAC address is enabled in your configuration (during configuration in coreConsultant), program them appropriately).

6. If Hash filtering is enabled in your configuration, program the Hash filter register (GMAC_HASH_TAB_HI and GMAC_HASH_TAB_LO).

7. Program the following fields to set the appropriate filters for the incoming frames in register GMAC_MAC_FRM_FILT

- a. Receive All
- b. Promiscuous mode
- c. Hash or Perfect Filter
- d. Unicast, Multicast, broad cast and control frames filter settings etc.

8. Program the following fields for proper flow control in register GMAC_FLOW_CTRL.

- a. Pause time and other pause frame control bits
- b. Receive and Transmit Flow control bits
- c. Flow Control Busy/Backpressure Activate

9. Program the Interrupt Mask register bits, as required, and if applicable, for your configuration.

10. Program the appropriate fields in register GMAC_MAC_CONF for example, Inter-frame gap while transmission, jabber disable, etc. Based on the Auto-negotiation you can set the Duplex mode (bit 11), port select (bit 15), etc.

11. Set the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register GMAC_MAC_CONF.

Normal Receive and Transmit Operation

For normal operation, the following steps can be followed.

- For normal transmit and receive interrupts, read the interrupt status. Then poll the descriptors, reading the status of the descriptor owned by the Host (either transmit or receive).
- On completion of the above step, set appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned by the DMA to resume the transmission and reception of data.
- If the descriptors were not owned by the DMA (or no descriptor is available), the DMA will go into SUSPEND state. The transmission or reception can be resumed by freeing the descriptors and issuing a poll demand by writing 0 into the Tx/Rx poll demand register (GMAC_TX_POLL_DEMAND and GMAC_RX_POLL_DEMAND).
- The values of the current host transmitter or receiver descriptor address pointer can be read for the debug process (GMAC_CUR_HOST_TX_DESC and GMAC_CUR_HOST_RX_DESC).
- The values of the current host transmit buffer address pointer and receive buffer address pointer can be read for the debug process (GMAC_CUR_HOST_TX_Buf_ADDR and GMAC_CUR_HOST_RX_BUF_ADDR).

Stop and Start Operation

When the transmission is required to be paused for some time then the following steps can be followed.

1. Disable the Transmit DMA (if applicable), by clearing ST (bit 13) of the control register GMAC_OP_MODE.

2. Wait for any previous frame transmissions to complete. This can be checked by reading the appropriate bits of MAC Debug register.

3. Disable the MAC transmitter and MAC receiver by clearing the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in egister GMAC_MAC_CONF.

4. Disable the Receive DMA (if applicable), after making sure the data in the RX FIFO is transferred to the system memory (by reading the register GMAC_DEBUG).

5. Make sure both the TX FIFO and RX FIFO are empty.

6. To re-start the operation, start the DMAs first, before enabling the MAC Transmitter and Receiver.

41.6.5 Clock Architecture

In RMII mode, reference clock and TX/RX clock can be from CRU or external OSC as following figure.

The mux select rmii_speed is GRF_SOC_CON1[11].

Fig. 41-13 RMII clock architecture when clock source from external OSC

In RGMII mode, clock architecture only supports that TX clock source is from CRU as following figure.

In order to dynamicly adjust the timing between TX/RX clock with data, deleyline is integrated in TX and RX clock path. Register GRF_SOC_CON3[15:14] can enable the deleylines, and GRF_SOC_CON3[13:0] is used to determine the delay length. There are 100 deley elements in each delayline, and it totally can adjust about 5.1ns typically.

Fig. 41-14 RGMII clock architecture when clock source from CRU

41.6.6 Remote Wake-Up Frame Filter Register

The register wkupfmfilter_reg, address (028H), loads the Wake-up Frame Filter register. To load values in a Wake-up Frame Filter register, the entire register (wkupfmfilter_reg) must be written. The wkupfmfilter_reg register is loaded by sequentially loading the eight register values in address (028) for wkupfmfilter_reg0, wkupfmfilter_reg1, ... wkupfmfilter_reg7, respectively. wkupfmfilter_reg is read in the same way.

The internal counter to access the appropriate wkupfmfilter_reg is incremented when lane3 (or lane 0 in big-endian) is accessed by the CPU. This should be kept in mind if you are accessing these registers in byte or half-word mode.

Fig. 41-15 Wake-Up Frame Filter Register

Filter i Byte Mask

This register defines which bytes of the frame are examined by filter i (0, 1, 2, and 3) in order to determine whether or not the frame is a wake-up frame. The MSB (thirty-first bit) must be zero. Bit j [30:0] is the Byte Mask. If bit j (byte number) of the Byte Mask is set, then Filter i Offset + j of the incoming frame is processed by the CRC block; otherwise Filter i Offset + j is ignored.

Filter i Command

This 4-bit command controls the filter i operation. Bit 3 specifies the address type, defining the pattern's destination address type. When the bit is set, the pattern applies to only multicast frames; when the bit is reset, the pattern applies only to unicast frame. Bit 2 and Bit 1 are reserved. Bit 0 is the enable for filter i; if Bit 0 is not set, filter i is disabled.

Filter i Offset

This register defines the offset (within the frame) from which the frames are examined by filter i. This 8-bit pattern-offset is the offset for the filter i first byte to examined. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 refers to the first byte of the frame).

Filter i CRC-16

This register contains the CRC_16 value calculated from the pattern, as well as the byte mask programmed to the wake-up filter register block.

41.6.7 System Consideration During Power-Down

GMAC neither gates nor stops clocks when Power-Down mode is enabled. Power saving by clock gating must be done outside the core by the CRU. The receive data path must be clocked with clk_rx_i during Power-Down mode, because it is involved in magic packet/wake-on-LAN frame detection. However, the transmit path and the APB path clocks can be gated off during Power-Down mode.

The pmt interrupt is asserted when a valid wake-up frame is received. This interrupt is generated in the clk_rx domain.

The recommended power-down and wake-up sequence is as follows.

1. Disable the Transmit DMA (if applicable) and wait for any previous frame transmissions to complete. These transmissions can be detected when Transmit Interrupt (TI - Register GMAC_STATUS[0]) is received.

2. Disable the MAC transmitter and MAC receiver by clearing the appropriate bits in the MAC Configuration register.

3. Wait until the Receive DMA empties all the frames from the Rx FIFO (a software timer may be required).

4. Enable Power-Down mode by appropriately configuring the PMT registers.

5. Enable the MAC Receiver and enter Power-Down mode.

6. Gate the APB and transmit clock inputs to the core (and other relevant clocks in the system) to reduce power and enter Sleep mode.

7. On receiving a valid wake-up frame, the GMAC asserts the pmt interrupt signal and exits Power-Down mode.

8. On receiving the interrupt, the system must enable the APB and transmit clock inputs to the core.

9. Read the register GMAC_PMT_CTRL_STA to clear the interrupt, then enable the other modules in the system and resume normal operation.

41.6.8 GRF Register Summary

GRF Register	Register Description	
	PHY interface select	
	3'b001: RGMII	
GRF_SOC_CONI[8:0]	3'b100: RMII	
	All others: Reserved	
	GMAC transmit flow control	
A 1	When set high, instructs the GMAC to transmit PAUSE	
GRF SOC CON1[9]	Control frames in Full-duplex mode. In Half-duplex	
	mode, the GMAC enables the Back-pressure function	
	until this signal is made low again	
	gmac speed	
GRF SOC CON1[10]	1'b1: 100-Mbps	
	1'b0: 10-Mbps	
	RMII clock selection	
GRF_SOC_CON1[11]	1'b1: 25MHz	
	1'b0: 2.5MHz	
	RGMII clock selection	
	2'b00: 125MHz	
GRF_SOC_CONT[13:12]	2'b11: 25MHz	
	2'b10: 2.5MHz	
	RMII mode selection	
GRF_SOC_CON1[14]	1'b1: RMII mode	
	1'b0: Reserved	
GRF_SOC_CON3[6:0]	RGMII TX clock delayline value	
GRF_SOC_CON3[13:7]	RGMII RX clock delayline value	
GRF_SOC_CON3[14]	RGMII TX clock delayline enable	

RK3288 TRM

	1'b1: enable 1'b0: disable
GRF_SOC_CON3[15]	RGMII RX clock delayline enable 1'b1: enable 1'b0: disable