SONY

Diagonal 6.43 mm (Type 1/2.8) CMOS Solid-state Image Sensor with Square Pixel for Color Cameras

IMX415-AAQR-C

STARVIS

Description

The IMX415-AAQR-C is a diagonal 6.4 mm (Type 1/2.8) CMOS active pixel type solid-state image sensor with a square pixel array and 8.46 M effective pixels. This chip operates with analog 2.9 V, digital 1.1 V, and interface 1.8 V triple power supply, and has low power consumption. High sensitivity, low dark current and no smear are achieved through the adoption of R, G and B primary color mosaic filters. This chip features an electronic shutter with variable charge-integration time.

(Applications: Surveillance cameras, FA cameras, Industrial cameras)

Features

- ◆ CMOS active pixel type dots
- ◆ Built-in timing adjustment circuit, H/V driver and serial communication circuit
- ♦ Input frequency: 24 MHz / 27 MHz / 37.125 MHz / 72 MHz / 74.25 MHz
- ♦ Number of recommended recording pixels: 3840 (H) × 2160 (V) approx. 8.29M pixel
- ◆ Readout mode

All-pixel scan mode

Horizontal / Vertical 2/2-line binning mode

Window cropping mode

Horizontal / Vertical direction - Normal / Inverted readout mode

◆ Readout rate

Maximum frame rate in

All-pixel scan mode: 12 bit: 60.3 frame/s, 10 bit: 90.9 frame/s

♦ High dynamic range (HDR) function

Multiple exposure HDR

Digital overlap HDR

- ◆ Synchronizing sensors function
- ◆ Variable-speed shutter function (resolution 1H units)
- ♦ CDS / PGA function

0 dB to 30 dB : Analog Gain 30 dB (step pitch 0.3 dB)

30.3 dB to 72 dB: Analog Gain 30 dB + Digital Gain 0.3 dB to 42 dB (step pitch 0.3 dB)

Supports I/O

CSI-2 serial data output (2 Lane / 4 Lane), RAW10 / RAW12 output

♦ Recommended exit pupil distance: $-30 \text{ mm to } -\infty$

Sony Semiconductor Solutions Corporation reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony Semiconductor Solutions Corporation cannot assume responsibility for any problems arising out of the use of these circuits.

Device Structure

◆ CMOS image sensor

◆ Image size

Diagonal 6.4 mm (Type 1/2.8) approx. 8.40 M pixels, All pixels

◆ Total number of pixels

3864 (H) × 2228 (V) approx. 8.60 M pixels

◆ Number of effective pixels

approx. 8.46 M pixels 3864 (H) × 2192 (V)

◆ Number of active pixels

SUMMIC TECHNOLOGY & MERCHANDISE INC.

Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage (analog: 2.9 V)	AV_{DD}	-0.3	3.3	V	
Supply voltage (interface: 1.8 V)	OV_{DD}	-0.3	3.3	V	
Supply voltage (digital: 1.1 V)	DV _{DD}	-0.3	2.0	V	
Input voltage	VI	-0.3	OV _{DD} + 0.3	V	Not exceed 3.3 V
Output voltage	VO	-0.3	OV _{DD} + 0.3	V	Not exceed 3.3 V
Operating temperature	Topr	-30	85	°C	
Storage temperature	Tstg	-40	85	°C	

Application Conditions

Symbol	Min.	Тур.	Max.	Unit
AV _{DD1}	2.80	2.90	3.00	V
OV _{DD}	1.70	1.80	1.90	V
DV _{DD1}	1.00	1.10	1.20	V
Tspec	-10	J`-	60	°C
oct	8 Mr			
	AV _{DD1} OV _{DD} DV _{DD1}	AV _{DD1} 2.80 OV _{DD} 1.70 DV _{DD1} 1.00	AV _{DD1} 2.80 2.90 OV _{DD} 1.70 1.80 DV _{DD1} 1.00 1.10	AV _{DD1} 2.80 2.90 3.00 OV _{DD} 1.70 1.80 1.90 DV _{DD1} 1.00 1.10 1.20

USE RESTRICTION NOTICE

This USE RESTRICTION NOTICE ("Notice") is for customers who are considering or currently using the image sensor products ("Products") set forth in this specifications book. Sony Semiconductor Solutions Corporation ("SSS") may, at any time, modify this Notice which will be available to you in the latest specifications book for the Products. You should abide by the latest version of this Notice. If a SSS subsidiary or distributor has its own use restriction notice on the Products, such a use restriction notice will additionally apply between you and the subsidiary or distributor. You should consult a sales representative of the subsidiary or distributor of SSS on such a use restriction notice when you consider using the Products.

Use Restrictions

- The Products are intended for incorporation into such general electronic equipment as office products, communication products, measurement products, and home electronics products in accordance with the terms and conditions set forth in this specifications book and otherwise notified by SSS from time to time.
- You should not use the Products for critical applications which may pose a life- or injury-threatening
 risk or are highly likely to cause significant property damage in the event of failure of the Products. You
 should consult your sales representative beforehand when you consider using the Products for such
 critical applications. In addition, you should not use the Products in weapon or military equipment.
- SSS disclaims and does not assume any liability and damages arising out of misuse, improper use, modification, use of the Products for the above-mentioned critical applications, weapon and military equipment, or any deviation from the requirements set forth in this specifications book.

Design for Safety

 SSS is making continuous efforts to further improve the quality and reliability of the Products; however, failure of a certain percentage of the Products is inevitable. Therefore, you should take sufficient care to ensure the safe design of your products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Export Control

 If the Products are controlled items under the export control laws or regulations of various countries, approval may be required for the export of the Products under the said laws or regulations.
 You should be responsible for compliance with the said laws or regulations.

No License Implied

• The technical information shown in this specifications book is for your reference purposes only. The availability of this specifications book shall not be construed as giving any indication that SSS and its licensors will license any intellectual property rights in such information by any implication or otherwise. SSS will not assume responsibility for any problems in connection with your use of such information or for any infringement of third-party rights due to the same. It is therefore your sole legal and financial responsibility to resolve any such problems and infringement.

Governing Law

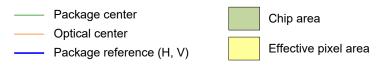
This Notice shall be governed by and construed in accordance with the laws of Japan, without reference
to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating
to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the
court of first instance.

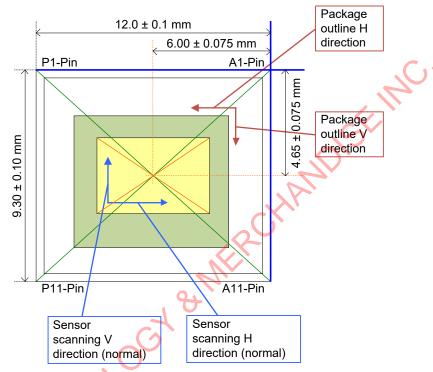
Other Applicable Terms and Conditions

The terms and conditions in the SSS additional specifications, which will be made available to you when
you order the Products, shall also be applicable to your use of the Products as well as to this
specifications book. You should review those terms and conditions when you consider purchasing
and/or using the Products.

General-0.0.9

Contents


Description	1
Features	1
Device Structure	2
Absolute Maximum Ratings	3
Application Conditions	3
USE RESTRICTION NOTICE	4
Optical Center	
Pixel Arrangement	8
Block Diagram and Pin Configuration	ç
Pin Description	
Electrical Characteristics	14
DC Characteristics	14
Current Consumption	15
AC Characteristics	16
Master Clock Waveform (INCK)	
System Clear (XCLR)	17
XVS / XHS Input Characteristics in Slave Mode (Register XMASTER = 1)	
XVS / XHS Input Characteristics in Master Mode (Register XMASTER = 0)	18
Serial Communication	
I/O Equivalent Circuit Diagram	
Spectral Sensitivity Characteristics	22
Image Sensor Characteristics	23
Image Sensor Characteristics Measurement Method.	24
Measurement Conditions	
Color Coding of Physical Pixel Array	24
Definition of standard imaging conditions	
Measurement Method	25
Setting Registers Using Serial Communication	
Description of Setting Registers (I ² C)	26
Register Communication Timing (I ² C)	
Communication Protocol	
Register Write and Read (I ² C)	
Single Read from Random Location	29
Single Read from Current Location	
Sequential Read Starting from Random Location	
Sequential Read Starting from Current Location	
Single Write to Random Location	
Sequential Write Starting from Random Location	
Register Map	32
Readout Drive mode	
Operating mode	
Image Data Output Format (CSI-2 output)	
Frame Format	
Frame Structure	
Embedded Data Line	
Image Data Output Format	
All-pixel mode	
Horizontal/Vertical 2/2-line binning mode	
Window Cropping Mode	
Description of Various Function	
Standby Mode	
Slave Mode and Master Mode	
Gain Adjustment Function	
Black Level Adjustment Function	
Shutter and Integration Time Settings Example of Integration Time Setting	
Normal Exposure Operation (Controlling the Integration Time in 1H Units)	
Hormar Exposure Operation (Oortrolling the integration fillio III III Offic)	/ /

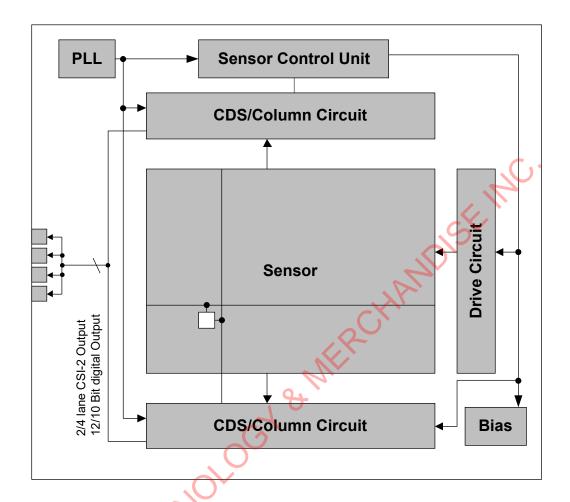

Long Exposure Operation (Control by Expanding the Num	ber of Lines per Frame)	72
Example of Integration Time Settings		
Signal Output		
CSI-2 output		
MIPI Transmitter		
INCK Setting		
Register Hold Setting		81
Mode Transitions		
Other Function		83
Power-on and Power-off Sequence		84
Power-on sequence		
Slew Rate Limitation of Power-on Sequence		
Power-off sequence		
Sensor Setting Flow		
Setting Flow in Sensor Slave Mode		87
Peripheral Circuit	<u> </u>	89
Spot Pixel Specifications		90
Zone Definition		
Notice on White Pixels Specifications		
Measurement Method for Spot Pixels		
Spot Pixel Pattern Specification		93
Marking		94
Notes On Handling Package Outline		95
Package Outline		97
List of Trademark Logos and Definition Statements		98
4	9	
1		
, O		
"		
(C)		
O_{I}		
SUMMICTECHIM		

Optical Center

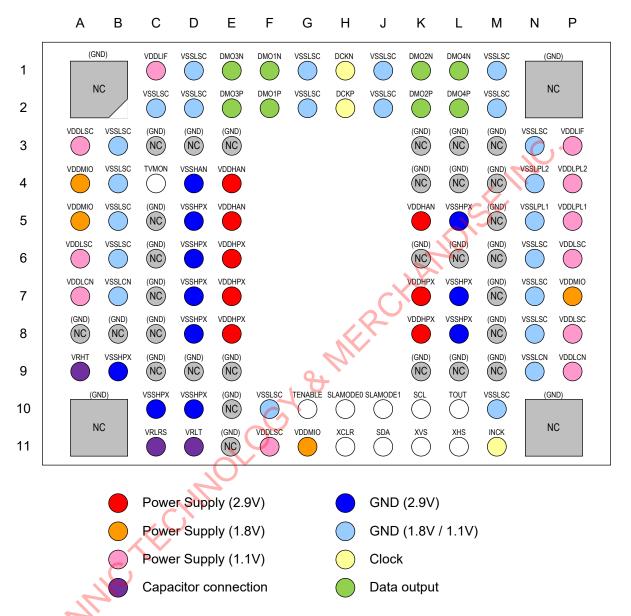
Top View

SUMMICTECHIN

Optical Center


Pixel Arrangement

Reference pin number is consecutive numbering of package pin array.
 See the Pin Configuration for the number of each pin.
 Dummy is the effective pixels to ignore the data content.
 The last Effective line and column are not read-out.


Pixel Arrangement

Block Diagram and Pin Configuration

Block Diagram

Bottom View

*The N.C. pin with (GND) can be connected to GND.

Pin Configuration

Pin Description

No.	Pin No	I/O	Analog / Digital	Symbol	Description
1	A1	_	_	N.C.	GND connectable
2	A3	Power	D	VDDLSC	1.1 V power supply
3	A4	Power	D	VDDMIO	1.8 V power supply
4	A5	Power	D	VDDMIO	1.8 V power supply
5	A6	Power	D	VDDLSC	1.1 V power supply
6	A7	Power	D	VDDLCN	1.1 V power supply
7	A8	_	_	N.C.	GND connectable
8	A9	0	Α	VRHT	Capacitor connection
9	A11	_	_	N.C.	GND connectable
10	В3	GND	D	VSSLSC	1.1V GND
11	B4	GND	D	VSSLSC	1.1V GND
12	B5	GND	D	VSSLSC	1.1V GND
13	В6	GND	D	VSSLSC	1.1V GND
14	В7	GND	D	VSSLCN	1.1V GND
15	B8	_	_	N.C.	GND connectable
16	В9	GND	Α	VSSHPX	2.9V GND
17	C1	Power	D	VDDLIF	1.1 V power supply
18	C2	GND	D	VSSLSC	1.1V GND
19	C3	_	_	N.C.	GND connectable
20	C4	0	Α	TVMON 👩	TEST output pin, OPEN
21	C5	_	_	N.C.	GND connectable
22	C6	_	_	N.C.	GND connectable
23	C7	_	_	N.C.	GND connectable
24	C8	_	_	N.C.	GND connectable
25	C9	_	(N.C.	GND connectable
26	C10	GND	A	VSSHPX	2.9V GND
27	C11	0	Α	VRLRS	Capacitor connection
28	D1	GND	D	VSSLSC	1.1V GND
29	D2	GND	D	VSSLSC	1.1V GND
30	D3		_	N.C.	GND connectable
31	D4	GND	Α	VSSHAN	2.9V GND
32	D5	GND	Α	VSSHPX	2.9V GND
33	D6	GND	Α	VSSHPX	2.9V GND
34	D7	GND	Α	VSSHPX	2.9V GND
35	D8	GND	Α	VSSHPX	2.9V GND
36	D9	_	_	N.C.	GND connectable
37	D10	GND	Α	VSSHPX	2.9V GND
38	D11	0	Α	VRLT	Capacitor connection
39	E1	0	D	DMO3N	CSI-2 output (data)
40	E2	0	D	DMO3P	CSI-2 output (data)
41	E3	_	_	N.C.	GND connectable
42	E4	Power	Α	VDDHAN	2.9 V power supply
43	E5	Power	Α	VDDHAN	2.9 V power supply
44	E6	Power	Α	VDDHPX	2.9 V power supply
45	E7	Power	Α	VDDHPX	2.9 V power supply
46	E8	Power	Α	VDDHPX	2.9 V power supply

47 E9	No.	Pin No	I/O	Analog / Digital	Symbol	Description
49	47	E9	_	_	N.C.	GND connectable
50	48	E10	_	_	N.C.	GND connectable
F2	49	E11	_	_	N.C.	GND connectable
F10	50	F1	0	D	DMO1N	CSI-2 output (data)
53 F11 Power D VDDLSC 1.1 V power supply 54 G1 GND D VSSLSC 1.1 V GND 55 G2 GND D VSSLSC 1.1 V GND 56 G10 I D TENABLE Test enable, OPEN 57 G11 Power D VDDMIO 1.8 V power supply 58 H1 O D DCKP CSI-2 output (clock) 59 H2 O D DCKP CSI-2 output (clock) 60 H10 I D SLAMODE0 Select slave address 61 H11 I D XCLR System clear 62 J1 GND D VSSLSC 1.1V GND 63 J2 GND D VSSLSC 1.1V GND 64 J10 I D SLAMODE1 Select slave address 65 J11 I/O D SSLSC 1.1V GND 64 <td>51</td> <td>F2</td> <td>0</td> <td>D</td> <td>DMO1P</td> <td>CSI-2 output (data)</td>	51	F2	0	D	DMO1P	CSI-2 output (data)
Section	52	F10	GND	D	VSSLSC	1.1V GND
55 G2 GND	53	F11	Power	D	VDDLSC	1.1 V power supply
Description	54	G1	GND	D	VSSLSC	1.1V GND
S7 G11 Power	55	G2	GND	D	VSSLSC	1.1V GND
S8	56	G10	I	D	TENABLE	Test enable, OPEN
59	57	G11	Power	D	VDDMIO	1.8 V power supply
60	58	H1	0	D	DCKN	CSI-2 output (clock)
61 H111 I D XCLR System clear 62 J1 GND D VSSLSC 1.1V GND 63 J2 GND D VSSLSC 1.1V GND 64 J10 I D SLAMODE1 Select slave address 65 J11 I/O D SDA Serial data communication 66 K1 O D DMO2P CSI-2 output (data) 67 K2 O D DMO2P CSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply	59	H2	0	D	DCKP	CSI-2 output (clock)
62 J1 GND D VSSLSC 1.1V GND 63 J2 GND D VSSLSC 1.1V GND 64 J10 I D SLAMODE1 Select slave address 65 J11 I/O D SDA Serial data communication 66 K1 O D DMO2P CSI-2 output (data) 67 K2 O D DMO2P CSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 v power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 v power supply 73 K8 Power A VDDHPX 2.9 v power supply 74 K9 — N.C. GND connectable 75	60	H10	I	D	SLAMODE0	Select slave address
63 J2 GND D VSSLSC 1.1V GND 64 J10 I D SLAMODE1 Select slave address 65 J11 I/O D SDA Serial data communication 66 K1 O D DMO2N CSI-2 output (data) 67 K2 O D DMO2P CSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input <tr< td=""><td>61</td><td>H11</td><td>I</td><td>D</td><td>XCLR</td><td>System clear</td></tr<>	61	H11	I	D	XCLR	System clear
64 J10 I D SLAMODE1 Select slave address 65 J11 I/O D SDA Serial data communication 66 K1 O D DMO2P CSI-2 output (data) 67 K2 O D DMO2P CSI-2 output (data) 68 K3 — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D D MO4H CSI-2 output (data) <td>62</td> <td>J1</td> <td>GND</td> <td>D</td> <td>VSSLSC</td> <td>1.1V GND</td>	62	J1	GND	D	VSSLSC	1.1V GND
65 J11 I/O D SDA Serial data communication 66 K1 O D DMO2N CSI-2 output (data) 67 K2 O D DMO2P CSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHAN 2.9 V power supply 73 K8 Power A VDDHAN 2.9 V power supply 73 K8 Power A VDDHAN 2.9 V power supply 74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal	63	J2	GND	D	VSSLSC	1.1V GND
66 K1 O D DMO2N CSI-2 output (data) 67 K2 O D DMO2P QSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable	64	J10	I	D	SLAMODE1	Select slave address
67 K2 O D DMO2P CSI-2 output (data) 68 K3 — — N.C. GND connectable 69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable	65	J11	I/O	D	SDA	Serial data communication
68 K3 — N.C. GND connectable 69 K4 — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — N.C. GND connectable 80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND	66	K1	0	D	DMO2N	CSI-2 output (data)
69 K4 — — N.C. GND connectable 70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 8	67	K2	0	D	DMO2P	CSI-2 output (data)
70 K5 Power A VDDHAN 2.9 V power supply 71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 8	68	K3	_	_	N.C.	GND connectable
71 K6 — — N.C. GND connectable 72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8	69	K4	_	_	N.C.	GND connectable
72 K7 Power A VDDHPX 2.9 V power supply 73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9	70	K5	Power	Α	VDDHAN	2.9 V power supply
73 K8 Power A VDDHPX 2.9 V power supply 74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — N.C. GND connectable 80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D X	71	K6	_	_		
74 K9 — N.C. GND connectable 75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — N.C. GND connectable 80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal	72	K7	Power	Α	VDDHPX	111
75 K10 I/O D SCL Serial clock input 76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — N.C. GND connectable 80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D <td>73</td> <td>K8</td> <td>Power</td> <td>Α</td> <td>VDDHPX</td> <td>2.9 V power supply</td>	73	K8	Power	Α	VDDHPX	2.9 V power supply
76 K11 I/O D XVS Vertical sync signal 77 L1 O D DMO4N CSI-2 output (data) 78 L2 Q D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 90			_			
77 L1 O D DMO4N CSI-2 output (data) 78 L2 O D DMO4P CSI-2 output (data) 79 L3 — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
78 L2 Q D DMO4P CSI-2 output (data) 79 L3 — — N.C. GND connectable 80 L4 — — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 92 M5	-			_ ` ·		, ,
79 L3 — N.C. GND connectable 80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C.						
80 L4 — N.C. GND connectable 81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 94 M7 —						,
81 L5 GND A VSSHPX 2.9V GND 82 L6 — — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 94 M7 — — N.C. GND connectable			CE			
82 L6 — N.C. GND connectable 83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable			GND	Δ		
83 L7 GND A VSSHPX 2.9V GND 84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable			_			
84 L8 GND A VSSHPX 2.9V GND 85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable	_		GND	Α		
85 L9 — — N.C. GND connectable 86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable						
86 L10 I/O D TOUT Digital TEST output pin, OPEN 87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable	_		_	_		
87 L11 I/O D XHS Horizontal sync signal 88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable	-		I/O	D		
88 M1 GND D VSSLSC 1.1V GND 89 M2 GND D VSSLSC 1.1V GND 90 M3 — N.C. GND connectable 91 M4 — N.C. GND connectable 92 M5 — N.C. GND connectable 93 M6 — N.C. GND connectable 94 M7 — N.C. GND connectable						
89 M2 GND D VSSLSC 1.1V GND 90 M3 — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable						. •
90 M3 — — N.C. GND connectable 91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable						
91 M4 — — N.C. GND connectable 92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable			_	_		
92 M5 — — N.C. GND connectable 93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable			_	_		
93 M6 — — N.C. GND connectable 94 M7 — N.C. GND connectable	-		_	_		
94 M7 — N.C. GND connectable			_	_		
			_	_		
1 V.C. 1 MIN CALIFORNIA.	95	M8	_	_	N.C.	GND connectable

96 M9 — N.C. GND connectable 97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLSC 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLPL2 1.1V power supply 108 P4 Power A <th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 111 P7<th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7<th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7<th></th><th>Pin No</th><th>I/O</th><th>Analog / Digital</th><th>Symbol</th><th>Description</th></th></th></th>	97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 111 P7 <th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7<th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7<th></th><th>Pin No</th><th>I/O</th><th>Analog / Digital</th><th>Symbol</th><th>Description</th></th></th>	97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7 <th>97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7<th></th><th>Pin No</th><th>I/O</th><th>Analog / Digital</th><th>Symbol</th><th>Description</th></th>	97 M10 GND D VSSLSC 1.1V GND 98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL1 1.1 V power supply 109 P5 Power D VDDLSC 1.1 V power supply 111 P7 <th></th> <th>Pin No</th> <th>I/O</th> <th>Analog / Digital</th> <th>Symbol</th> <th>Description</th>		Pin No	I/O	Analog / Digital	Symbol	Description
98 M11 I D INCK Master clock input 99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 110 P6 Power D VDDMIO 1.8 V power supply 112	98 M11	98 M11	98 M11	96	M9	_	_	N.C.	GND connectable
99 N3 GND D VSSLSC 1.1V GND 100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 110 P6 Power D VDDMIO 1.8 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 113	99	99	99	97	M10	GND	D	VSSLSC	1.1V GND
100 N4 GND A VSSLPL2 1.1V GND 101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLCN 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 110 P6 Power D VDDMIO 1.8 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply	100	100	100	98	M11	I	D	INCK	Master clock input
101 N5 GND A VSSLPL1 1.1V GND 102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 110 P6 Power D VDDMIO 1.8 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply	101	101	101	99	N3	GND	D	VSSLSC	1.1V GND
102 N6 GND D VSSLSC 1.1V GND 103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLSC 1.1 V power supply 110 P6 Power D VDDMIO 1.8 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	102	102	102	100	N4	GND	Α	VSSLPL2	1.1V GND
103 N7 GND D VSSLSC 1.1V GND 104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	103 N7 GND D VSSLSC	103 N7 GND D VSSLSC	103 N7 GND D VSSLSC	101	N5	GND	Α	VSSLPL1	1.1V GND
104 N8 GND D VSSLSC 1.1V GND 105 N9 GND D VSSLCN 1.1V GND 106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	104	104	104	102	N6	GND	D	VSSLSC	1.1V GND
105 N9 GND D VSSLCN 1.1V GND 106 P1 — — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	105	105	105	103	N7	GND	D	VSSLSC	1.1V GND
106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	106 P1 — N.C. GND connectable 107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	104	N8	GND	D	VSSLSC	1.1V GND
107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	107 P3 Power D VDDLIF 1.1 V power supply 108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLCN 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	105	N9	GND	D	VSSLCN	1.1V GND
108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	108 P4 Power A VDDLPL2 1.1 V power supply 109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	106	P1	_	_	N.C.	GND connectable
109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	109 P5 Power A VDDLPL1 1.1 V power supply 110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDLSC 1.1 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	107	P3	Power	D	VDDLIF	1.1 V power supply
110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	110 P6 Power D VDDLSC 1.1 V power supply 111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	108	P4	Power	Α	VDDLPL2	1.1 V power supply
111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	111 P7 Power D VDDMIO 1.8 V power supply 112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	109	P5	Power	Α	VDDLPL1	1.1 V power supply
112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply	112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	112 P8 Power D VDDLSC 1.1 V power supply 113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	110	P6	Power	D	VDDLSC	1.1 V power supply
113 P9 Power D VDDLCN 1.1 V power supply	113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	113 P9 Power D VDDLCN 1.1 V power supply 114 P11 — N.C. GND connectable	111	P7	Power	D	VDDMIO	1.8 V power supply
	114 P11 — N.C. GND connectable	114 P11 — N.C. GND connectable	114 P11 — N.C. GND connectable	112	P8	Power	D	VDDLSC	1.1 V power supply
	114 P11 — N.C. GND connectable	114 P11 — N.C. GND connectable	114 P11 — N.C. GND connectable	113	P9	Power	D	VDDLCN	1.1 V power supply
aloct & NIET	aloct & MER	aloct & MER	aloct & MER	114	P11	_	_	N.C.	GND connectable
	CHRO	TECHNO.	AIIC FECHINO.						K
MAICHE							-HKC	100 d	
SUMMIC FECHINO	SUMMIC	SUMI	5				SHAC	SLOCK &	

Electrical Characteristics

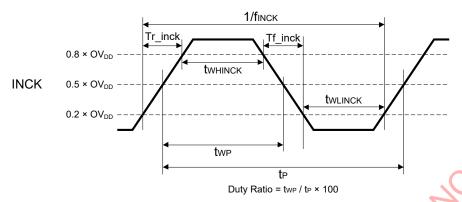
DC Characteristics

116	em	Pins	Symbol	Condition	Min.	Тур.	Max.	Unit
	Analog	VDDHx	AV _{DD}		2.80	2.90	3.00	V
Supply /oltage	Interface	VDDMx	OV _{DD}		1.70	1.80	1.90	V
	Digital	VDDLx	DV _{DD}		1.00	1.10	1.20	V
Digital input voltage		XHS XVS XCLR	VIH	XVS / XHS	0.8 × OV _{DD}	_	_	V
- · · · · · · · · · · · · · · · · · · ·	<u> </u>	INCK SLAMODE0 SLAMODE1		Slave Mode /IL		-\	0.2 × OV _{DD}	V
		XHS	VOH	XVS / XHS	OV _{DD} - 0.2	5 <u>Y</u>	_	V
Digital outp	_	XVS TOUT	VOL	Master Mode	_\)	_	0.2	V
			6	& MERC				

Current Consumption

Item	Symbol	Тур.	Max.	Unit
Operating current	I _{AVDD}	128	156	mA
MIPI CSI-2 / 4 Lane, 2079 Mbps 12 bit, 60 frame/s	I _{OVDD}	3	3	mA
All-pixel mode	I _{DVDD}	187	250	mA
	I _{AVDD_STB}	_	0.2	mA
Standby current	I _{OVDD_STB}	_	0.2	mA
	I _{DVDD_STB}	_	15.1	mA

(Typ.) Supply voltage 2.9 V / 1.8 V / 1.1 V, Tj = 25 $^{\circ}$ C, standard luminous intensity. Operating current:

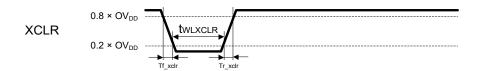

(Max.) Supply voltage 3.0 V / 1.9 V / 1.2 V, Tj = 60 °C, worst state of internal circuit

operating current consumption,

SUMMIC TECHNOLOGY & MIERCHANGE
SUMMIC TECHNOLOGY & MIERCHANGE (Max.) Supply voltage 3.0 V / 1.9 V / 1.2 V, Tj = 60 °C, INCK: 0 V, light-obstructed state.

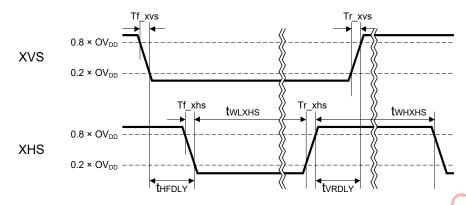
AC Characteristics

Master Clock Waveform (INCK)



INCK 24MHz, 27MHz, 37125MHz, 72MHz, 74.25MHz

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	finck	f _{INCK} × 0.96	finck	finck × 1.02	MHz	f _{INCK} = 24 MHz, 27 MHz,
INCK Low level pulse width	twlinck	4	_		ns	37.125 MHz, 72 MHz,
INCK High level pulse width	twhinck	4	_	()	ns	74.25 MHz
INCK clock duty	_	45	50	55	%	Define with 0.5 × OV _{DD}
INCK Rise time	Tr_inck	_	Al	5	ns	20 % to 80 %
INCK Fall time	Tf_inck	— •	+	5	ns	80 % to 20 %


^{*} The INCK fluctuation affects the frame rate.

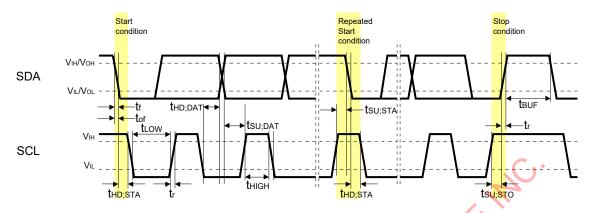
System Clear (XCLR)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
XCLR Low level pulse width	twlxclr	4 / finck	_	_	ns	
XCLR Rise time	Tr_xclr	_	_	5	ns	20 % to 80 %
XCLR Fall time	Tf_xclr	_	_	5	ns	80 % to 20 %
SUNINIC TEC		oct	BANE	2CHP		

XVS / XHS Input Characteristics in Slave Mode (Register XMASTER = 1)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
XHS Low level pulse width	twlxHs	4 / finck	_	- 6	ns	
XHS High level pulse width	twnxns	4 / finck	_	7	ns	
XVS - XHS fall width	tHFDLY	1 / finck	_	4	ns	
XHS - XVS rise width	tvrdly	1 / finck	>	/ -	ns	
XVS Rise time	Tr_xvs	_	~€),	5	ns	20 % to 80 %
XVS Fall time	Tf_xvs	- /	/ =	5	ns	80 % to 20 %
XHS Rise time	Tr_xhs	7	_	5	ns	20 % to 80 %
XHS Fall time	Tf_xhs	9+	_	5	ns	80 % to 20 %

XVS / XHS Input Characteristics in Master Mode (Register XMASTER = 0)


^{*} XVS and XHS cannot be used for the sync signal to pixels.

Be sure to detect sync code to detect the start of effective pixels in 1 line.

For the output waveforms in master mode, see the item of "Slave Mode and Master Mode"

Serial Communication

 I^2C

I²C Specification

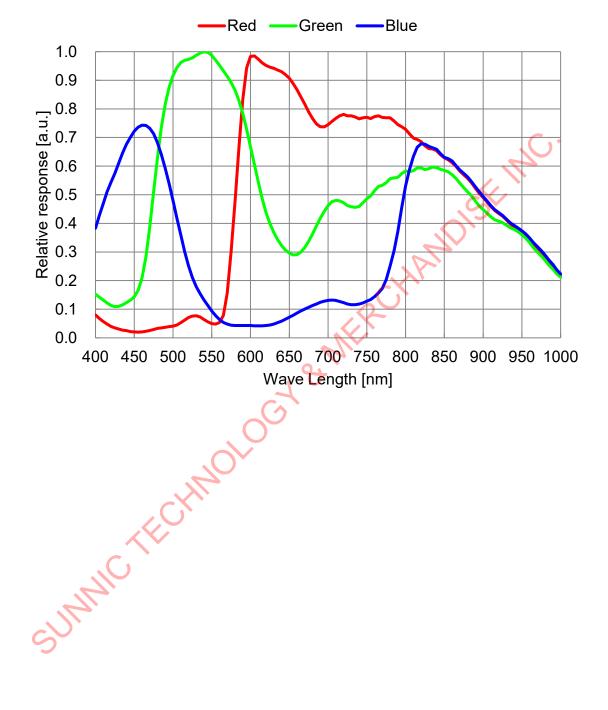
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Low level input voltage	VIL	-0.3		$0.3 \times OV_{DD}$	٧	
High level input voltage	VIH	0.7 × OV _{DD}	_	1.9	V	
Low level output voltage	Vol	0	_	0.2 × OV _{DD}	٧	OV _{DD} < 2 V, Sink 3 mA
High level output voltage	Vон	0.8 × OV _{DD}	_	\ <u>\</u>	٧	
Input current	li	-10	-1	10	μΑ	0.1 × OV _{DD} to 0.9 × OV _{DD}
Input Capacitance for SCL / SDA	Ci	_	4	10	рF	

I²C AC Characteristics (Standard-mode, Fast-mode)

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SCL clock frequency	fscL	0		400	kHz	
Hold time (Start Condition)	t _{HD;STA}	0.6	1	1	μs	
Low period of the SCL clock	t _{LOW}	1.3	_	_	μs	
High period of the SCL clock	t _{HIGH}	0.6	_	_	μs	
Set-up time (Repeated Start Condition)	t _{SU;STA}	0.6	_	_	μs	
Data hold time	t _{HD;DAT}	0	_	0.9	μs	
Data set-up time	t _{SU;DAT}	100	_	_	ns	
Rise time of both SDA and SCL signals	t _r	1		300	ns	
Fall time of both SDA and SCL signals	t _f	_	_	300	ns	
Set-up time (Stop Condition)	tsu;sto	0.6	_	_	μs	
Bus free time between a STOP and START Condition	t _{BUF}	1.3	_	_	μs	
Output fall time	tof	_	_	250	ns	Load 10 pF to 400 pF, 0.7 × OV _{DD} to 0.3 × OV _{DD}

I²C AC Characteristics (Fast-mode Plus)

Item Symbols SCL clock frequency fscL Hold time (Start Condition) the SCL clock tLow period of the SCL clock tLight period of the SCL clock tHigh period thigh period of thigh period of the SCL clock thigh period of thigh	0 0.26 0.5 0.26 0.26 0.26 0.5 0 0.26 0.5	Typ	Max. 1000	Unit kHz µs µs µs µs µs ns ns ns ns	Remarks INCK ≥ 16 MHz Load 10 pF to 400 pF, 0.7 × OV _{DD} to 0.3 × OV
Hold time (Start Condition) Low period of the SCL clock High period of the SCL clock Set-up time (Repeated Start Condition) Data hold time Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time thdistrict tof	0.26 0.5 0.26 0.26 0.26 0 0.26 0.26 0.26			μs μs μs μs μs μs ns ns ns μs	Load 10 pF to 400 pF,
Low period of the SCL clock High period of the SCL clock Set-up time (Repeated Start Condition) Data hold time Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	0.5 0.26 0.26 0.26 0 50 		0.9	µs µs µs µs ns ns ns ns	Load 10 pF to 400 pF,
High period of the SCL clock Set-up time (Repeated Start Condition) Data hold time Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	0.26 0.26 0.50 0.26 0.26 0.26		0.9	µs µs µs ns ns ns µs	Load 10 pF to 400 pF,
Set-up time (Repeated Start Condition) Data hold time Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	0.26 0 50 		0.9	μs μs ns ns ns μs	Load 10 pF to 400 pF,
Data hold time Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	50 - - 0 0.26		0.9	µs ns ns ns us	Load 10 pF to 400 pF,
Data set-up time Rise time of both SDA and SCL signals Fall time of both SDA and SCL signals Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	50 ————————————————————————————————————		120 120 120 —	ns ns ns us	Load 10 pF to 400 pF,
Rise time of both SDA and SCL signals tr Fall time of both SDA and SCL signals tr Set-up time (Stop Condition) tsu;sto Bus free time between a STOP and START Condition tof	0.26 0.5	_ _ _	120 120 —	ns ns µs	Load 10 pF to 400 pF,
Fall time of both SDA and SCL signals to Set-up time (Stop Condition) tsu;stor Bus free time between a STOP and START Condition tof	0.26	_ _ _	120 —	ns µs	Load 10 pF to 400 pF,
Set-up time (Stop Condition) Bus free time between a STOP and START Condition Output fall time tof	0.5			μs	
Bus free time between a STOP and START Condition Output fall time tof	0.5	_	120	μs	
START Condition Output fall time tof		-	120	(()	
Output fall time tof	- -	-	120	ns	
CHMOLOG CO	78	NER	CKY		1
SUMMICTECT					


I/O Equivalent Circuit Diagram

☐: External pin

Symbol	Equivalent circuit	Symbol	Equivalent circuit
TENABLE	VDDMIO VDDMIO VDDMIO VSSLSC	XVS XHS TOUT	VDDMIO VDDMIO VSSLSC
INCK	VDDMIO VDDMIO VSSLPL	XCLR SLAMODE1 SLAMODE2	VDDMIO Vin VSSLSC
SDA SCL	VDDMIO Vsslsc	VRLRS VRLT	VSSHPX VSSHPX
TVMON	VDDHAN Sin/out VSSHAN	DMOPx DMOMx DMCKP DMCKM	VDDLIF DMOPX DMCKP DMCKP DMCKM VSSLIF
VRHT	VRHx VSSHPX		

Spectral Sensitivity Characteristics

(Characteristics in the wafer status)

Image Sensor Characteristics

(AV_{DD} = 2.9 V, OV_{DD} = 1.8 V, DV_{DD} = 1.1 V, Tj = 60 °C, All-pixel mode, 12 bit 30 frame/s, Gain: 0 dB)

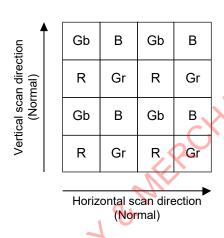
Item		Symbol	Min.	Тур.	Max.	Unit	Measurement method	Remarks
G sensitivity		8	1740 (255)	2048 (300)	_	Digit (mV)	1	1/30 s storage 12 bit converted value
Sensitivity	R/G	RG	0.42	_	0.58	_	2	
ratio	B/G	G BG 0.26 — 0.44 —		2	_			
Saturation sign	Saturation signal		3895 (570)	_	_	Digit (mV)	3	12 bit converted value
Video signal sl	nading	SH	_	_	25	%	4	-
Vertical line		VL	_	_	90	μV	5 6	12 bit converted value
Dark signal		Vdt	_	_	0.89 (0.13)	Digit (mV)	6	1/30 s storage 12 bit converted value
Dark signal shading		ΔVdt	_	_	0.89 (0.13)	Digit (mV)	7	1/30 s storage 12 bit converted value

Note) 1. Converted value into mV using 1Digit = 0.1465 mV for 12-bit output and 1Digit = 0.5865 mV for 10-bit output.

- 2. The video signal shading is the measured value in the wafer status (including color filter) and does not include characteristics of the seal glass.
- 3. The characteristics above apply to effective pixel area.

Image Sensor Characteristics Measurement Method

Measurement Conditions


1. In the following measurements, the device drive conditions are at the typical values of the bias conditions and clock voltage conditions.

2. In the following measurements, spot pixels are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output.

Color Coding of Physical Pixel Array

The primary color filters of this image sensor are arranged in the layout shown in the figure below. Gr and Gb represent the G signal on the same line as the R and B signals, respectively. The R signal and Gr signal lines and the Gb signal and B signal lines are output successively.

Gb B Gb B

Color Coding Diagram

Definition of standard imaging conditions

◆ Standard imaging condition I:

Use a pattern box (luminance: 706 cd/m^2 , color temperature of 3200 K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

◆ Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

◆ Standard imaging condition III:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2 % at all angles. Use a testing standard lens (exit pupil distance - 30 mm) with CM500S (t = 1.0 mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

SONY

Measurement Method

1. Sensitivity

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/100 s, measure the Gr and Gb signal outputs (VGr, VGb) at the center of the screen, and substitute the values into the following formula.

$$S = (VGr + VGb) / 2 \times 100 / 30 [mV]$$

2. Sensitivity ratio

Set the measurement condition to the standard imaging condition II. After adjusting the average value of the Gr and Gb signal outputs to 300 mV, measure the R signal output (VR [mV]), the Gr and Gb signal outputs (VGr, VGb [mV]) and the B signal output (VB [mV]) at the center of the screen in frame readout mode, and substitute the values into the following formulas.

3. Saturation signal

Set the measurement condition to the standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr and Gb signal outputs, 300 mV, measure the minimum values of the Gr, Gb, R and B signal outputs.

4. Video signal shading

Set the measurement condition to the standard imaging condition III. With the lens diaphragm at F2.8, adjust the luminous intensity so that the average value of the Gr and Gb signal outputs is 300 mV. Then measure the maximum value (Gmax [mV]) and the minimum value (Gmin [mV]) of the Gr and Gb signal outputs, and substitute the values into the following formula.

$$SH = (Gmax - Gmin) / 300 \times 100 [\%]$$

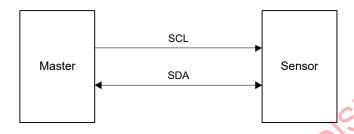
5. Vertical Line

With the device junction temperature of 60 °C and the device in the light-obstructed state, calculates each average output of Gr, Gb, R and B on respective columns. Calculates maximum value of difference with adjacent column on the same color (VL [μV]).

6. Dark signal

With the device junction temperature of 60 °C and the device in the light-obstructed state, divide the output difference between 1/30 s integration and 1/300 s integration by 0.9, and calculate the signal output converted to 1/30 s integration. Measure the average value of this output (Vdt [mV]).

7. Dark signal shading


After the measurement item 6, measure the maximum value (Vdmax [mV]) and the minimum value (Vdmin [mV]) of the dark signal output, and substitute the values into the following formula.

Setting Registers Using Serial Communication

This sensor can write and read the setting values of the various registers shown in the Register Map by I^2C communication. See the Register Map for the addresses and setting values to be set.

Description of Setting Registers (I²C)

The serial data input order is MSB-first transfer. The table below shows the various data types and descriptions. Using SLAMODE0 and SLAMODE1 pins, SLAVE address can be changed.

Pin connection of serial communication

SLAVE Address

SLAMODE1 pin	SLAMODE0 pin	MSB			80				LSB
Low	Low	0	0	1	1	0	1	0	R/W
Low	High	0	0	0.1	0	0	0	0	R/W
High	Low	0	1	O 1	0	1	1	0	R/W
High	High	0	4	1	0	1	1	1	R/W

^{*} R/W is data direction bit

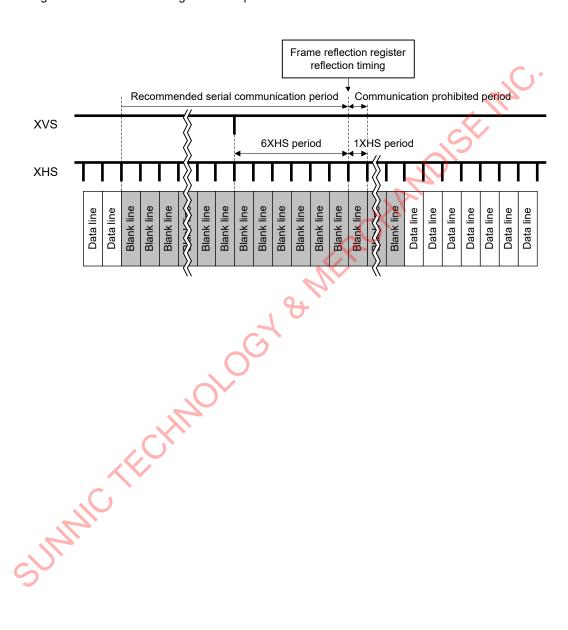
R/W

R/W bit	Data direction
0	Write (Master to Sensor)
1	Read (Sensor to Master)

I²C pin description

Symbol	Pin No.	Remarks
SCL	K10	I ² C serial clock input
SDA	J11	I ² C serial data communication

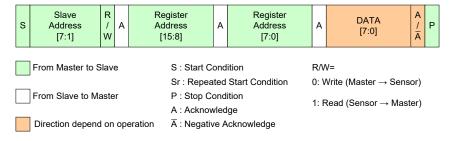
SONY


IMX415-AAQR-C

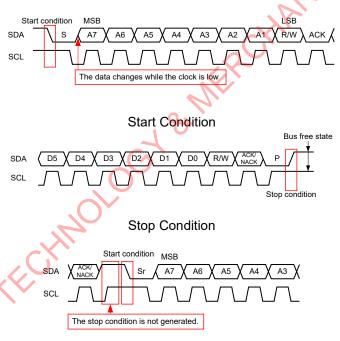
Register Communication Timing (I²C)

In I^2C communication system, communication can be performed excluding the prohibited 1H period as described in the below figure.

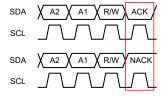
For the registers marked "V" in the item of Reflection timing, when the communication is performed in the communication period shown in the figure below they are reflected by "Frame reflection register reflection timing". For the registers marked "I" in the item of Reflection timing, the settings are reflected when the communication is performed.


Using REGHOLD function is recommended for register setting using I²C communication. For REGHOLD function, see "Register Transmission Setting" in "Description of Functions".

SONY IMX415-AAQR-C


Communication Protocol

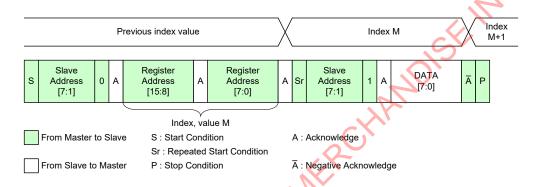
I²C serial communication supports a 16-bit register address and 8-bit data message type.


Communication Protocol

Data is transferred serially, MSB first in 8-bit units. After each data byte is transferred, A (Acknowledge) / A (Negative Acknowledge) is transferred. Data (SDA) is transferred at the clock (SCL) cycle. SDA can change only while SCL is Low, so the SDA value must be held while SCL is High. The Start condition is defined by SDA changing from High to Low while SCL is High. When the Stop condition is not generated in the previous communication phase and Start condition for the next communication is generated, that Start condition is recognized as a Repeated Start condition.

Repeated Start Condition

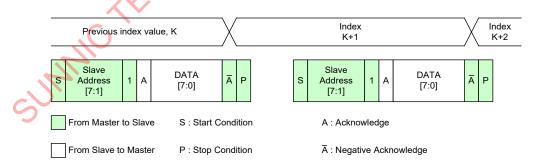
After transfer of each data byte, the Master or the sensor transmits an Acknowledge / Negative Acknowledge and release (does not drive) SDA. When Negative Acknowledge is generated, the Master must immediately generate the Stop Condition and end the communication.


Acknowledge and Negative Acknowledge

Register Write and Read (I²C)

This sensor corresponds to four reed modes and the two write modes.

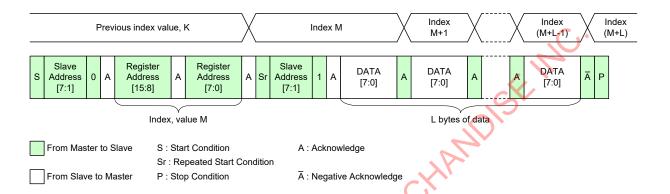
Single Read from Random Location


The sensor has an index function that indicates which address it is focusing on. In reading the data at an optional single address, the Master must set the index value to the address to be read. For this purpose, it performs dummy write operation up to the register address. The upper level of the figure below shows the sensor internal index value, and the lower level of the figure shows the SDA I/O data flow. The Master sets the sensor index value to M by designating the sensor slave address with a write request, then designating the address (M). Then, the Master generates the start condition. The Start Condition is generated without generating the Stop Condition, so it becomes the Repeated Start Condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge immediately followed by the index address data on SDA. After the Master receives the data, it generates a Negative Acknowledge and the Stop Condition to end the communication.

Single Read from Random Location

Single Read from Current Location

After the slave address is transmitted by a write request, that address is designated by the next communication and the index holds that value. In addition, when data read/write is performed, the index is incremented by the subsequent Acknowledge/Negative Acknowledge timing. When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after Acknowledge. After receiving the data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication, but the index value is incremented, so the data at the next address can be read by sending the slave address with a read request.

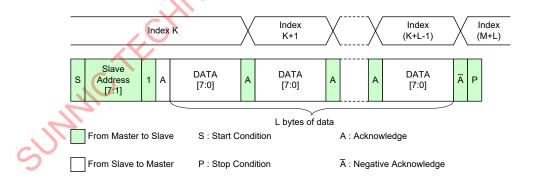


Single Read from Current Location

Sequential Read Starting from Random Location

In reading data sequentially, which is starting from an optional address, the Master must set the index value to the start of the addresses to be read. For this purpose, dummy write operation includes the register address setting. The Master sets the sensor index value to M by designating the sensor slave address with a read request, then designating the address (M). Then, the Master generates the Repeated Start Condition.

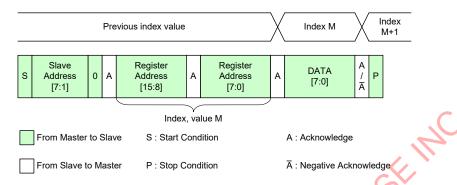
Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge followed immediately by the index address data on SDA. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.



Sequential Read Starting from Random Location

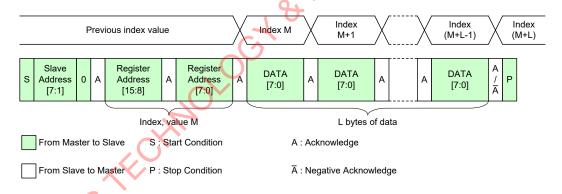
Sequential Read Starting from Current Location

When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after the Acknowledge. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA.


This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.

Sequential Read Starting from Current Location

Single Write to Random Location


The Master sets the sensor index value to M by designating the sensor slave address with a write request, and designating the address (M). After that the Master can write the value in the designated register by transmitting the data to be written. After writing the necessary data, the Master generates the Stop Condition to end the communication.

Single Write to Random Location

Sequential Write Starting from Random Location

The Master can write a value to register address M by designating the sensor slave address with a write request, designating the address (M), and then transmitting the data to be written. After the sensor receives the write data, it outputs an Acknowledge and at the same time increments the register address, so the Master can write to the next address simply by continuing to transmit data. After the Master writes the necessary number of bytes, it generates the Stop Condition to end the communication.

Sequential Write Starting from Random Location

Register Map

This sensor has a total of 4352 bytes (256 × 17) of registers, composed of registers with LSB addresses 00h to FFh that correspond to MSB address 30h to 40h. Use the initial values for empty address. Some registers must be change from the initial values, so the sensor control side should be capable of setting 4352 bytes.

There are three different register reflection timings.

About the Reflection timing column of the Register Map, registers noted as "I" are reflected immediately after writing to register, registers noted as "S" are set during standby mode and reflected after standby canceled, registers noted as "V" are reflected at "Fame reflection register reflection timing" on the figure described in the section of "Setting Registers with Serial Communication".

Do not perform communication to addresses not listed in the Register Map. Doing so may result in operation errors. However, other registers that requires communication to address not listed above may be added, so addresses up to FFh should be supported for LSB address; 3000h to 40FFh.

- For the register that is writing " * " to the setting value in description (Indicated by red letter), change the value from the default value after the reset.
- In Gain setting only, it is reflected on the next frame which was settings.
- SIMMIC FECHINOLOGY & MILERCHAN

 SUMMIC FECHINOLOGY Setting except for the setting values described in the description column is prohibited.

(1) Registers corresponding to address = 30**h.

Address bit Register name Description By By By address By register address By register address By address						t value	
Name Standby Standby	Address	bit	_	Description			1
0 STANDBY 0: Operating 1: Standby 1h 1 1 Fixed to "0h" 0h			name	2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-	-	timing
1					register	address	
2		0	STANDBY		1h		I
3000h 3		1	_	Fixed to "0h"	0h		_
A		2	_	Fixed to "0h"	0h		_
A	3000h	3	_	Fixed to "0h"	0h	01h	_
S		4	_	Fixed to "0h"	0h		_
Fixed to "0h"		5	_		0h		_
Register hold (Function not to update V reflection register) Oh negister) O		6	_	i	0h		_
1		7	_	Fixed to "0h"	0h	()	_
1				Register hold		1	
Section Sect			DE01101 D				
0: Invalid 1: Valid		0	REGHOLD		Oh	,	ı
1				= -	'20'		
3		1	_		0h		_
3	3001h	2	_	Fixed to "0h"	0h	00h	_
4		3	_		0h		_
S		4	_		0h		_
6		5	_				_
7		6	_				_
Setting of master mode operation 1			_				_
1					-		
1: Master mode operation stop		0	XMSTA		1h		ı
1							
3002h		1	_		0h		_
3		2	_	Fixed to "0h"	0h	1	_
A	3002h	3	_		0h	01h	_
5 — Fixed to "0h" — <		4	_		0h		_
6 — Fixed to "0h" Oh — — — — — — — — — — — — — — — — — —		5			0h		_
7 — Fixed to "0h" Oh Select Master /Slave mode 0 XMASTER 0: Master mode 1: Slave mode 1 — Fixed to "0h" Oh 2 — Fixed to "0h" Oh 3 — Fixed to "0h" Oh 4 — Fixed to "0h" Oh 5 — Fixed to "0h" Oh 6 — Fixed to "0h" Oh — Oh			- ()	Fixed to "0h"	0h		_
Select Master /Slave mode		7	13	Fixed to "0h"	0h		_
3003h 0 XMASTER 0: Master mode 0h 1: Slave mode 1: Slave mode 0h 2:					-		
1: Slave mode 1 — Fixed to "0h" Oh 2 — Fixed to "0h" Oh 3 — Fixed to "0h" Oh 4 — Fixed to "0h" Oh 5 — Fixed to "0h" Oh 6 — Fixed to "0h" Oh — — — — — — — — — — — — — — — — — — —		0	XMASTER		0h		s
1				1: Slave mode			
2		1	XV _		0h		_
3003h 3 — Fixed to "0h" 0h — 4 — Fixed to "0h" 0h — 5 — Fixed to "0h" 0h — 6 — Fixed to "0h" 0h — —			_			1	_
4 — Fixed to "0h" — 5 — Fixed to "0h" — 6 — Fixed to "0h" —	3003h	_	_	i		00h	_
5 — Fixed to "0h" — — — — — — — — — — — — — — — — — — —			_			1	_
6 — Fixed to "0h" — —	-		_			1	_
			_	i			_
	C	7	_	Fixed to "0h"	0h	1	_

		Register	6	Defaul after	t value reset	Reflection
Address	bit	name	Description	By register	By address	timing
	0		LSB			
	1					
	2					
00001	3					
3008h	4	BCWAIT_TIME	The value is set according to INCK.	٥٦٦١	FFh	0
	5	[9:0]	Refer to "INCK setting"	0FFh		S
	6					
	7					
	0					
	1		MSB		C_{\bullet}	
	2	-	Fixed to "0h"	0h		_
3009h	3	_	Fixed to "0h"	0h	00h	_
300911	4	_	Fixed to "0h"	0h	0011	_
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0		LSB	•		
	1					
	2					
300Ah	3		~O'		B6h	
300/411	4		The value is set according to INCK.	0B6h	Don	S
	5	[9:0]	Refer to "INCK setting"	OBOIT		Ü
	6					
	7		9,1			
	0		, 0			
	1		MSB			
	2	_	Fixed to "0h"	0h		_
300Bh	3	_	Fixed to "0h"	0h	A0h	_
COODII	4	_	Fixed to "0h"	0h	7 1011	_
	5	- ()	Fixed to "1h"	1h		_
	6	-,1	Fixed to "0h"	0h		_
	7	- //	Fixed to "1h"	1h		_
	0	. ()	Window mode setting			
	1		0: All-pixel mode, Horizontal/Vertical	0h		V
	2	[3:0]	2/2-line binning			,
301Ch	3		4: Window cropping mode		00h	
	4	<u> </u>	Fixed to "0h"	0h		_
	5	_	Fixed to "0h"	0h		
1	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		—

Address		Register			It value reset	Reflectio
	bit	name	Description	By	By	
		паше		register	address	timing
			Mode setting	rogiotor	dadrocc	
	0	HADD	0h: All-pixel mode	0h		S
			1h: Horizontal 2 binning			
_	1	_	Fixed to "0h"	0h	_	
_	2	_	Fixed to "0h"	0h	_	
3020h	3	_	Fixed to "0h"	0h	00h	_
	4	_	Fixed to "0h"	0h		_
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
			Mode setting		10	
	0	VADD	0h: All-pixel mode	0h		S
			1h: Vertical 2 binning	/,		
	1	_	Fixed to "0h"	0h		_
	2	_	Fixed to "0h"	0h		_
3021h	3	_	Fixed to "0h"	0h	00h	_
	4	_	Fixed to "0h"	0h		_
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		ı
	0	ADDMODE	Mode setting			
-		[1:0]	0h: All-pixel mode	0h		S
	1	[1.0]	1h: Horizontal/Vertical 2/2-line binning			
	2	_	Fixed to "0h"	0h		_
3022h	3	_	Fixed to "0h"	0h	00h	
	4	_	Fixed to "0h"	0h		
	5	_	Fixed to "0h"	0h		
	6	_	Fixed to "0h"	0h		
	7		Fixed to "0h"	0h		_

		Register	5	Defaul after	t value reset	Reflection
Address	bit	name	Description	Ву	Ву	timing
				register	address	
	0		LSB			
	1					
	2					
3024h	3				CAh	
	4					
	5					
	6		When sensor master mode vertical			
	7		span setting.			
	0					
	1	VMAX	For details, see the item of	008CAh	(C).	V
	2	[19:0]	"Slave Mode and Master Mode"		7	
3025h	3		in the section of		08h	
	5		"Description of Various Functions".			
	6			10		
	7					
	0		4			
	1					
	2					
	3		MSB			
3026h	4	_	Fixed to "0h"	0h	00h	_
	5	_	Fixed to "0h"	0h		
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0		LSB			
	1		4			
	2		_(^)			
3028h	3				26h	
302011	4		When concer meeter made berizontal		2011	
	5	((),	When sensor master mode horizontal span setting.			
	6	. ~	span setting.			
	7	HMAX	For details, see the item of	0226h		V
	0	[15:0]	"Slave Mode and Master Mode"			•
	1		in the section of			
	2		"Description of Various Functions".			
3029h	3				02h	
	4					
	5					
7,	6		MOD			
	7		MSB			

		Register			lt value reset	Reflection
Address	bit	name	Description	Ву	Ву	timing
		namo		register	address	uning
	0	HREVERSE	Horizontal direction Readout inversion control 0: Normal 1: Inverted	0h		V
3030h	1	VREVERSE	0: Normal 1: Inverted		00h	V
	2	2 — Fixed to "0h"				_
	3	_	Fixed to "0h"	0h		
	4	_	Fixed to "0h"	0h	(().	_
	5	_	Fixed to "0h"	0h	1	_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0		AD conversion bits setting	Con		
	1	ADBIT [1:0]	0: AD 10 bit 1: AD 12 bit (11 bit + digital dither)	1h		S
	2	_	Fixed to "0h"	0h		_
3031h	3	_	Fixed to "0h"	0h	01h	
	4	_	Fixed to "0h"	0h		
	5	_	Fixed to "0h"	0h		_
	6	_		_		
	7	_	Fixed to "0h" Fixed to "0h"	0h 0h		_
	0	MDBIT	Number of output bit setting 0: 10 bit 1: 12 bit	1h		S
	1	_	Fixed to "0h"	0h		_
	2	_	Fixed to "0h"	0h		
3032h	3		Fixed to "0h"	0h	01h	_
	4	- 0	Fixed to "0h"	0h		
	5	- (0)	Fixed to "0h"	0h		
	6	-112	Fixed to "0h"	0h		_
	7		Fixed to "0h"	0h		_
	0	7.0	Output IF mode setting	Un		
3033h	1 2	SYS_MODE [3:0]	0: 2376 Mbps 2: 2079 Mbps 4: 1782 Mbps 5: 891 Mbps 7: 594 Mbps 8: 1140 / 1485 Mbps 9: 720 Mbps	4h	04h	S
6	4	_	Fixed to "0h"	0h]	_
	5	_	Fixed to "0h"	0h	1	_
			Fixed to "0h"	0h	1	
	6	-	IFIXEG TO OH	Un		_

		Pogistor			t value reset	Reflection
Address	bit	Register name	Description	By	By	timing
		Hame		register	address	unnig
	0		LSB	register	addicas	
	1					
	2					
	3					
3040h	4		In window grapping mode		00h	
	5		In window cropping mode Start position			
	6	PIX_HST	(Horizontal direction)	0000h		V
	7	[12:0]	(i ionzontal direction)	000011		V
	0		Multiples of 2			
			inditiples of 2			
	1				(()	
	2				1	
3041h	3		MOD		00h	
	4		MSB	01		
	5	_	Fixed to "0h"	0h		
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h") 0h		
	0		LSB			
	1					
	2					
3042h	3				18h	
00 1211	4		In window cropping mode		1011	
	5	DIV LIMIDTH	Cropping width			
	6	PIX_HWIDTH	(Horizontal direction)	0F18h		V
	7	[12:0]	0,			
	0		Multiples of 24			
	1					
	2					
	3					
3043h	4		MSB		0Fh	
	5	()	Fixed to "0h"	0h		_
	6	- 2	Fixed to "0h"	0h		_
	7	+//	Fixed to "0h"	0h		_
	0		LSB			
	1					
	2	XV				
	3					
3044h	4		In window cropping mode		00h	
	5		Start position			
	6	PIX_VST	(Vertical direction)	0000h		V
11	7	[12:0]		UUUUII		V
			Designated in Line ×2,			
5	0		Multiples of 4			
	1					
	2					
3045h	3		MOD		00h	
	4		MSB	01		
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_

Address bit Register name Description after reset By register By address 1 2 3046h 1 5 In window cropping mode Cropping width (Vertical direction) 1120h Designated in Line × 2,	Reflection timing
Composition Composition	
0	
3046h 2 3 4 5 6 7 PIX_VWIDTH [12:0] In window cropping mode Cropping width (Vertical direction) 1120h Designated in Line × 2	
3046h 3 4 5 6 PIX_VWIDTH [12:0] In window cropping mode Cropping width (Vertical direction) 1120h	
3046h 4 5 PIX_VWIDTH (Vertical direction) 1120h Designated in Line × 2	
Cropping width PIX_VWIDTH [12:0] Pesignated in Line × 2	
PIX_VWIDTH (Vertical direction) [12:0] Designated in Line × 2	
7 [12:0] Designated in Line × 2	
Designated in Line × 2	V
Designated in Line × 2,	
Multiples of 4	7
1 Ividitiples of 4	•
2	
20471- 3	
3047h 4 MSB	
5 — Fixed to "0h" Oh	_
6 — Fixed to "0h" 0h	
7 — Fixed to "0h" 0h	
7 — Fixed to "0h" 0	
1	
2	
3050h 3 66h	
30001 4	
5	
6	
7	
SHR0 Storage time adjustment 00066h	V
2 [19:0] Designated in line units.	
3051h 3 00h	
4	
5	
6	
7	_
2 Nep	
3052h 3 MSB 00h	
F: 11 #01 "	_
5 — Fixed to "Oh" Oh 6 — Fixed to "Oh" Oh	<u> </u>
7 — Fixed to "0h" 0h	<u> </u>

Address	bit	Register Description		t value reset	Reflection	
Address	DIT	name	Description	Ву	Ву	timing
				register	address	
	0		LSB			
	1					
	2					
3090h	3	CAIN DCC 0	Coin potting		00h	
309011	4	GAIN_PCG_0	Gain setting (0.0dB to 72.0dB / 0.3dB step)	000h	OUN	V
	5	[8:0]	(0.0db to 72.0db / 0.3db step)			
	6					
	7					
	0		MSB			
	1	_	Fixed to "0h"	0h	C	_
	2	_	Fixed to "0h"	0h		_
3091h	3	_	Fixed to "0h"	0h	001	_
	4	_	Fixed to "0h"	0h	00h	_
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0	\0.40.01.IT.0.E1	XVS pin setting in master mode			
	_	1	0: Fixed to Low	2h		1
	1		2: VSYNC output		2Ah	
	2	VIIOOUTOEI	XHS pin setting in master mode			
00001		XHSOUTSEL	0: Fixed to Low	2h		I
30C0h	3	[1:0]	2: HSYNC output			
	4		Fired to "Oh"	OI:		
	5	_	Fixed to "2h"	2h		_
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0	V//0 DDV/	XVS pin setting			
	_	XVS_DRV	0: XVS output (Master mode)	3h		S
	1	[1:0]	3. HiZ (Slave mode)			
	2	VIIO DDV	XHS pin setting			
20041	_	XHS_DRV	0: XHS output (Master mode)	3h	054	S
30C1h	3	[1:0]	3: HiZ (Slave mode)		0Fh	
	4		Fixed to "Oh"	O.F		
	5	\Q'	Fixed to "0h"	0h		_
	6	1//-	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_

		Register			t value reset	Reflection
Address	bit	name	Description	Ву	Ву	timing
		name		register	address	uning
	0	_	Fixed to "0h"	0h	addicas	
	1	_	1	0h		_
			Fixed to "0h"			
	2	_	Fixed to "0h"	0h		
	3	_	Fixed to "0h"	0h		
	4		XVS pulse width setting			
30CCh		NA (Q1 11 Q	in master mode.		00h	
		XVSLNG	0: 1H	0h		1
	5	[1:0]	1: 2H			
			2: 4H			
			3: 8H		C	
	6	_	Fixed to "0h"	0h		
	7		Fixed to "0h"	0h		_
	0	_	Fixed to "0h"	0h		_
	1	_	Fixed to "0h"	0h		_
	2	-	Fixed to "0h"	0h		_
	3	_	Fixed to "0h"	0h		_
	4		XHS pulse width setting			
0000			in master mode.		001	
30CDh		XHSLNG	0: 16clock		00h	
	5	[1:0]	1: 32clock	0h		ı
			2: 64clock			
			3: 128clock			
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
	0		The value is set according to Readout			
	1		mode.			
	2	DIG_CLP_VSTART	2: Horizontal / Vertical 2/2-line binning	06h		S
	3	[4:0]	mode	Uon		3
30D9h	4		6: All-pixel scan mode		06h	
			•	OI:		
	5	<u> </u>	Fixed to "0h"	0h		
	6		Fixed to "0h"	0h		_
	7		Fixed to "0h"	0h		
	0	CX	The value is set according to Readout			
		DIG_CLP_VNUM	mode.			
	1	[1:0]	1: Horizontal / Vertical 2/2-line binning	2h		S
		1 []	mode			
			2: All-pixel scan mode			
30DAh	2	_	Fixed to "0h"	0h	02h	
	3	_	Fixed to "0h"	0h		
11	4	_	Fixed to "0h"	0h		_
	5	_	Fixed to "0h"	0h		
5	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_

Address	bit	Register name	Description	Defaul after By register	t value reset By address	Reflection timing
30E2h	0 1 2 3 4 5 6	BLKLEVEL [9:0]	LSB Black level offset value setting 10-bit readout mode: 1digit/1h 12-bit readout mode: 4digit/1h	032h	32h	ſ
30E3h	0 1 2 3 4 5 6 7	——————————————————————————————————————	MSB Fixed to "0h"	Oh Oh Oh Oh Oh Oh	looh .	
SUR		CLECHINO	Fixed to "0h" Fixed to "0h" Authority of the control of the cont			

(2) Registers corresponding to address = 31**h.

		Register			t value reset	Reflection
Address	bit	name	Description	By register	By address	timing
3115h	[7:0]	INCKSEL1 [7:0]	The value is set according to INCK. Refer to "INCK setting"	00h	00h	S
3116h	[7:0]	INCKSEL2 [7:0]	The value is set according to INCK. Refer to "INCK setting"	28h	28h	S
3118h	0 1 2 3 4 5 6	INCKSEL3 [10:0]	The value is set according to INCK. Refer to "INCK setting"	0C0h	ÇŌh .	Ø
3119h	0 1 2 3	_	MSB Fixed to "0h"	0h		
	4	_	Fixed to "0h"	0h	00h	_
	5	_	Fixed to "0h"	0h		-
	6	_	Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
311Ah	0 1 2 3 4 5 6 7	INCKSEL4 [10:0]	The value is set according to INCK. Refer to "INCK setting"	0E0h	E0h	S
311Bh	0 1 2 3 4 5 6		MSB Fixed to "0h"	Oh Oh Oh Oh Oh	00h	
311Eh	[7:0]	INCKSEL5 [7:0]	The value is set according to INCK. Refer to "INCK setting"	28h	28h	S

(3) Registers corresponding to address = 32**h.

Address	bit	bit Register name	Description	Default value after reset		Reflection
	DIL			Ву	Ву	timing
				register	Address	
32D4h	[7:0]	_	Set to "21h"	20h	20h	S
32ECh	[7:0]	_	Set to "A1h"	A0h	A0h	S

(4) Registers corresponding to address = 34**h.

					Default value		
Address	bit	Register	Description	after reset		Reflection	
	Address	name		Ву	Ву	timing	
					register	Address	
	3452h	[7:0]	_	Set to "7Fh"	00h	00h	S
I	3453h	[7:0]	_	Set to "03h"	00h	00h	S

(5) Registers corresponding to address = 35**h.

				4	le i	t value	
Addross	bit	Register		Description	after	reset	Reflection
Address	DIL	name	name	Description	Ву	Ву	timing
				CX.	register	address	
358Ah	[7:0]		Set to "04h"		06h	06h	S
35A1h	[7:0]	-	Set to "02h"		00h	00h	S

3	5A1h	[7:0]		Set to "02h"		00h	00h	S			
(6)	(6) Registers corresponding to address = 36**h.										
Ad	ldress	bit	Register	H	Description		t value reset	Reflection			
Α.	idiess	name	Description	By register	By Address	timing					
36	6BCh	[7:0]	- 3	Set to "0Ch"		00h	00h	S			
36	6CCh	[7:0]	- (()	Set to "53h"		FFh	FFh	S			
36	3CDh	[7:0]	12	Set to "00h"		01h	01h	S			
36	6CEh	[7:0]		Set to "3Ch"		00h	00h	S			
36	6D0h	[7:0]	. (-1)	Set to "8Ch"		FFh	FFh	S			
36	6D1h	[7:0]	.(/,-	Set to "00h"		01h	01h	S			
36	6D2h	[7:0]	\\ \ -	Set to "71h"		00h	00h	S			
36	6D4h	[7:0]	_	Set to "3Ch"		00h	00h	S			
36	6D6h	[7:0]	_	Set to "53h"		FFh	FFh	S			
36	6D7h 🎺	[7:0]	_	Set to "00h"		01h	01h	S			
36	6D8h	[7:0]		Set to "71h"		00h	00h	S			
36	6DAh	[7:0]		Set to "8Ch"		FFh	FFh	S			
36	6DBh	[7:0]	_	Set to "00h"		01h	01h	S			

(7) Registers corresponding to address = 37**h.

A -1-1		Register name	Description	Defaul after	Reflection	
Address	bit		Description	Ву	Ву	timing
				register	address	
	[7:0]		The value is set according to AD		03h	S
3701h		ADBIT1	Conversion bits	03h		
370111		[7:0]	00h: AD 10-bit	USII		
			03h: AD 12-bit (11 bit + digital dither)			
3724h	[7:0]	_	Set to "02h"	0Ah	0Ah	S
3726h	[7:0]	_	Set to "02h"	0Ah	0Ah	S
3732h	[7:0]	_	Set to "02h"	00h	00h	S
3734h	[7:0]	_	Set to "03h"	0Ah	0Ah	S
3736h	[7:0]	_	Set to "03h"	0Ah	0Ah)	S
3742h	[7:0]	_	Set to "03h"	00h	00h	S

(8) Registers corresponding to address = 38**h.

		Register name			Defaul after	Reflection	
Address	bit			Description	By	Ву	timing
					register	address	
3862h	[7:0]		Set to "E0h"		7Fh	7Fh	S
38CCh	[7:0]		Set to "30h"		33h	33h	S
38CDh	[7:0]		Set to "2Fh"		33h	33h	S

	38CDh	[7:0]	_	Set to "2Fh"		33h	33h	S
(9) Regis	ters c	corresponding to addre	ess = 39**h.	ME			
	Addraga	hit	Register	H.	Description	Defaul after	t value reset	Reflection
	Address	bit	name	0	Description	By register	By address	timing
	395Ch	[7:0]	- 1	Set to "0Ch"		00h	00h	S

(10) Registers corresponding to address = 3A**h.

		Register name		Defaul		
Address	bit		Description	after	Reflection	
	DIL		Description	Ву	Ву	timing
				register	address	
3A42h	[7:0]		Set to "D1h"	11h	11h	S
3A4Ch	[7:0]		Set to "77h"	37h	37h	S
3AE0h	[7:0]	_	Set to "02h"	00h	00h	S
3AECh	[7:0]	_	Set to "0Ch"	00h	00h	S

(11) Registers corresponding to address = $3B^{**}h$.

		Register			t value reset	Reflection
Address	bit	name	Description	Ву	Ву	timing
				register	address	
3B00h	[7:0]	_	Set to "2Eh"	28h	28h	S
3B06h	[7:0]		Set to "29h"	23h	23h	S
3B98h	[7:0]		Set to "25h"	19h	19h	S
3B99h	[7:0]		Set to "21h"	19h	19h	S
3B9Bh	[7:0]		Set to "13h"	19h	19h	S
3B9Ch	[7:0]		Set to "13h"	19h	19h	S
3B9Dh	[7:0]		Set to "13h"	19h	19h	S
3B9Eh	[7:0]		Set to "13h"	16h	16h	S
3BA1h	[7:0]	_	Set to "00h"	04h	04h	S
3BA2h	[7:0]	_	Set to "06h"	09h	09h	S
3BA3h	[7:0]	_	Set to "0Bh"	09h	09h	S
3BA4h	[7:0]	_	Set to "10h"	0Dh	0Dh	S
3BA5h	[7:0]	_	Set to "14h"	0Dh	0Dh	S
3BA6h	[7:0]	_	Set to "18h"	0Dh	0Dh	S
3BA7h	[7:0]	_	Set to "1Ah"	0Dh	0Dh	S
3BA8h	[7:0]	_	Set to "1Ah"	0Dh	0Dh	S
3BA9h	[7:0]	_	Set to "1Ah"	0Dh	0Dh	S
3BACh	[7:0]	_	Set to "EDh"	00h	00h	S
3BADh	[7:0]	_	Set to "01h"	00h	00h	S
3BAEh	[7:0]	_	Set to "F6h"	22h	22h	S
3BAFh	[7:0]	_	Set to "02h"	00h	00h	S
3BB0h	[7:0]	_	Set to "A2h"	84h	84h	S
3BB1h	[7:0]	_	Set to "03h"	00h	00h	S
3BB2h	[7:0]	_	Set to "E0h"	A2h	A2h	S
3BB3h	[7:0]	_	Set to "03h"	00h	00h	S
3BB4h	[7:0]	_	Set to "E0h"	11h	11h	S
3BB5h	[7:0]	_	Set to "03h"	01h	01h	S
3BB6h	[7:0]	- 1	Set to "E0h"	ECh	ECh	S
3BB7h	[7:0]	_ (()	Set to "03h"	01h	01h	S
3BB8h	[7:0]	-,12	Set to "E0h"	7Ah	7Ah	S
3BBAh	[7:0]	4	Set to "E0h"	D1h	D1h	S
3BBCh	[7:0]	(4)	Set to "DAh"	ECh	ECh	S
3BBEh	[7:0]	.V	Set to "88h"	F5h	F5h	S
3BC0h	[7:0]		Set to "44h"	43h	43h	S
3BC2h	[7:0]	_	Set to "7Bh"	7Ah	7Ah	S
3BC4h	[7:0]	_	Set to "A2h"	A1h	A1h	S
3BC8h	[7:0]	_	Set to "BDh"	D1h	D1h	S
3BCAh	[7:0]	_	Set to "BDh"	DBh	DBh	S

(12) Registers corresponding to address = 40**h.

		Register		Defau	lt value	Reflection
Address	bit	name	Description	By register	By address	timing
	0	LANEMODE	Output interface selection	J		
	1	LANEMODE	1: CSI-2 2lane	3h		S
	2	[2:0]	3: CSI-2 4lane			
4001h	3		Fixed to "0h"	0h	03h	1
400111	4	ı	Fixed to "0h"	0h	0311	
	5	ı	Fixed to "0h"	0h		
	6		Fixed to "0h"	0h		_
	7	_	Fixed to "0h"	0h		_
4004h	[7:0]	TXCLKESC_FREQ	The value is set according to INCK.	1290h	90h	S
4005h	[7:0]	[15:0]	Refer to "INCK setting"	129011	12h	3
	0	INCKSEL6	The value is set according to INCK.	1h	7	S
	U	INCNSELO	Refer to "INCK setting"	1h		0
	1		Fixed to "0h"	0h		
	2	_	Fixed to "0h"	0h		
400Ch	3		Fixed to "0h"	0h	01h	
	4	_	Fixed to "0h"	0h		_
	5	_	Fixed to "0h"	0h		_
	6	_	Fixed to "0h"	0h		_
	7		Fixed to "0h"	0h	1	
4018h	[7:0]	TCLKPOST	21.11.1	000-1	B7h	
4019h	[7:0]	[15:0]	Global timing setting	00B7h	00h	S
401Ah	[7:0]	TCLKPREPARE			67h	
401Bh	[7:0]	[15:0]	Global timing setting	0067h	00h	S
401Ch	[7:0]	TCLKTRAIL	OLI LESS DE	00051	6Fh	
401Dh	[7:0]	[15:0]	Global timing setting	006Fh	00h	S
401Eh	[7:0]	TCLKZERO	a. Ca	0.4554	DFh	
401Fh	[7:0]	[15:0]	Global timing setting	01DFh	01h	S
4020h	[7:0]	THSPREPARE	<u> </u>		6Fh	
4021h	[7:0]	[15:0]	Global timing setting	006Fh	00h	S
4022h	[7:0]	THSZERO			CFh	_
4023h	[7:0]	[15:0]	Global timing setting	00CFh	00h	S
4024h	[7:0]	THSTRAIL		225-	6Fh	_
4025h	[7:0]	[15:0]	Global timing setting	006Fh	00h	S
4026h	[7:0]	THSEXIT			B7h	_
4027h	[7:0]	[15:0]	Global timing setting	00B7h	00h	S
4028h	[7:0]) TLPX			5Fh	
4029h	[7:0]	[15:0]	Global timing setting	005Fh	00h	S
	0					
71	1	INCKSEL7	The value is set according to INCK.	0h		S
SO.	2	[2:0]	Refer to "INCK setting"			_
5	3	_	Fixed to "0h"	0h	1	_
4074h	4	_	Fixed to "0h"	0h	00h	_
	5	_	Fixed to "0h"	0h	1	_
	6	_	Fixed to "0h"	0h	1	_
				Ş: -	1	

Readout Drive mode

Operating mode

The table below shows the operating modes available with this sensor.

These frame rates indicate the maximum rates for each mode. When using a typical frame rate, please refer to the "List of Setting Register" at section "Image Data Output Format".

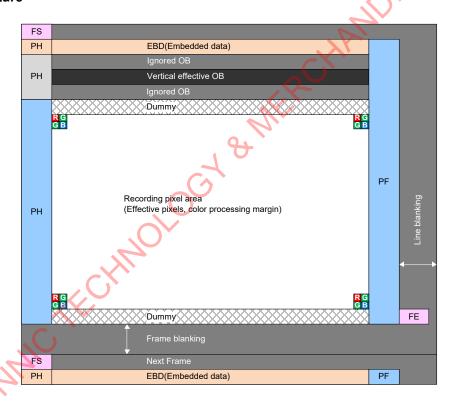
		5	AD	Output	Frame	Recordin	ng Pixels	INIOIA	411	4) () (
Mode	Lane	Data rate	conversion	bit width	rate	Н	V	INCK	1H period	1V period	
		[Mbps/Lane]	[bit]	[bit]	[frame/s]	[pixels]	[lines]	[MHz]	[Clock]	[XHS]	
		0070	10	10	44.4			27, 37.125,	746 ^(*1)		
		2079	12	12	37.5			74.25	887 (*1)		
		1700	10	10	38.5			27, 37.125,	861 ^(*1)		
		1782	12	12	32.4			74.25	1022 (*1)		
	2	1440	10	10	31.6			24, 72	1016 ^(*2)		
	2	891 10 10 19.8 12 12 16.6		27, 37.125,	∕ 1668 ^(*1)						
			12	12	16.6			74.25	1990 ^(*1)		
		720	10	10	16.2			24, 72	1985 ^(*2)		
		594	10	10	13.4			27, 37.125,	2238 (*1)		
		594	12	12	11.2		7	7.	74.25	2958 (*1)	
		2376	10	40	00.0			27, 37.125,	365 ^(*1)		
		2376	10	10	90.9			74.25	365 ^(*1)	2238	
All pixel		2079	10	10	82.9	3840	2160	27, 37.125,	400 (*1)		
All pixel			12	12	60.3		2160	74.25	550 ^(*1)		
		1782	10	10	72.4			27, 37.125,	458 ^(*1)		
			12	12	60.3	9.		74.25	550 ^(*1)		
		1485		61.6			27, 37.125,	538 ^(*1)			
	4							74.25			
		1440	10	10	60.4			24, 72	532 (*2)		
			12	12	51.1			,	629 (*2)		
		891	10	10	38.5			27, 37.125,	861 (*1)		
			12	12	32.4			74.25	1022 (*1)		
		720	10	10	31.6			24, 72	1017 (*2)		
		0	12	12	26.5			,	1210 ^(*2)		
		594	10	10	26.2			27, 37.125,	1265 ^(*1)		
			12	12	22.0			74.25	1506 ^(*1)		

- (*1) Clock frequency = 74.25 [MHz]
- (*2) Clock frequency = 72 [MHz]

		Data rate	AD	Output	Frame		ng Pixels	INCK	1H period	1V period
Mode	Lane	[Mbps/Lane]	conversion [bit]	bit width [bit]	rate [frame/s]	H [pixels]	V [lines]	[MHz]	[Clock*]	[XHS]
		2079	10	12	70.5	[pixeis]	[iiiles]	27, 37.125, 74.25	470 (*1)	
	•	1782	10	12	61.5			27, 37.125, 74.25	539 (*1)	
	2	891	10	12	32.4			27, 37.125, 74.25	1024 (*1)	
Horizontal/		594	10	12	21.9			27, 37.125, 74.25	1509 ^(*1)	
Vertical 2/2-line		2079	10	12	90.9	1920	1080	27, 37.125, 74.25	365 (*1)	2238
binning		1782	10	12	90.9			27, 37.125, 74.25	365 (*1)	
	4	1440	10	12	88.1			24, 72 27, 37.125,	√ 365 ^(*2)	
		891	10	12	61.5			74.25	539 ^(*1)	
		720	10	12	51.0			24, 72	630 (*2)	
		594	10	12	42.4		7,	27, 37.125, 74.25	782 ^(*1)	
C		720 594 frequency = frequency =	ECHI	OLC	ST					

SONY IMX415-AAQR-C

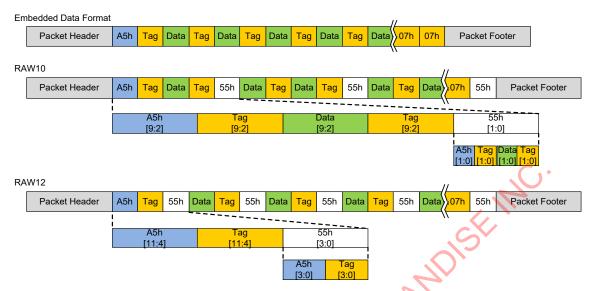
Image Data Output Format (CSI-2 output)


Frame Format

Each line of each image frame is output like the General Frame Format of CSI-2. The settings for each packet header are shown below.

DATA Type

Header [5:0]	Name	Setting register (I ² C)	Description
00h	Frame Start Code	N/A	FS
01h	Frame End Code	N/A	FE
10h	NULL	N/A	Invalid data
12h	Embedded Data	N/A	Embedded data
2Bh	RAW10	Address: 3032h	0A0Ah
2Ch	RAW12	MDBIT [0]	0C0Ch
37h	OB Data	N/A	Vertical OB line data


Frame Structure

Frame Structure of CSI-2 output

Embedded Data Line

The Embedded data line is output in a line following the sync code FS.

The end of the address and the register value is determined according to the tags embedded in the data.

Embedded Data Line Tag

Tag	Data Byte Description
00h	Illegal Tag. If found treat as end of Data.
07h	End of Data.
AAh	CCI Register Index MSB [15.8]
A5h	CCI Register Index LSB [7:0]
5Ah	Auto increment the CCI index after the data byte – valid data Data byte contains valid CCI register data.
55h	Auto increment the CCI index after the data byte – null data A CCI register does not exist for the current CCI index. The data byte value is the 07h.
FFh	Illegal Tag. If found treat as end of Data.
JAMIC	

Specific output examples are shown below.

Pixel (8bit)	bit	I ² C address [HEX]	Data Byte Description	Description
1	[7:0]	_	_	ignored
2	[3:0]	301C[3:0]	WINMODE	
	[3:0]	_	_	ignored
3	[4]	3030[0]	HREVERSE	
3	[6:5]	3022[1:0]	ADDMODE	
	[7]	_	_	ignored
4 to 8	[7:0]	_	_	ignored
	[4:0]	_	_	ignored
9	[5]	3030[1]	VREVERSE	
	[7:6]	_	_	ignored
10	[7:0]	_	_	ignored
11	[5:0]	=	_	ignored
11	[7:6]	3031[1:0]	ADBIT	
12	[7:0]	_	_	ignored
	[2:0]	4001[2:0]	LANEMODE	
13	[3]	3032[0]	MDBIT	.<
	[7:4]	3030[3:0]	SYS_MODE	
18 to 23	[7:0]	_	_	ignored
24	[7:0]	3050[7:0]		
25	[7:0]	3051[7:0]	SHR0	
26	[3:0]	3052[3:0]		\mathbf{O}
20	[7:4]	=	- /	ignored
27 to 53	[7:0]	_	- (/)	ignored
54	[7:0]	30E2[7:0]	BLKLEVEL	
55	[1:0]	30E3[1:0]	DLNLEVEL	
55	[7:2]	_	, **	ignored
56 to 216	[7:0]	_	4 -	ignored

Output data is Data[7:0] = 00h from 217 to 224 pixel.

Output data is Data[7:0] = 07h from 225 to end pixel.

Image Data Output Format

The table below shows the register setting example of typical frame rate.

The frame rate is obtained by the following formula when using other frame rates.

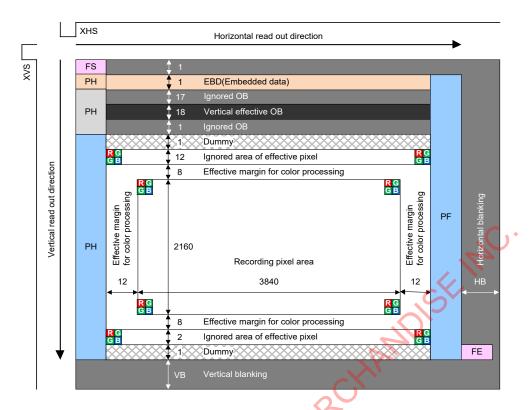
Frame rate [frame / s] = 1 / ($V_{TTL} \times (1H period)$)

V_{TTL} : 1 frame line length or VMAX

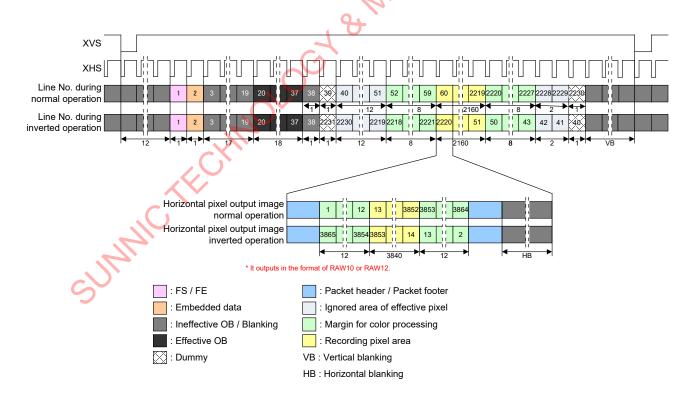
: "1V period" or more in "Operating mode"

1H period (unit [s]) : "1H period" or more in "Operating mode"

SUMMIC TECHNOLOGY & NIERCHANDISE INC.


All-pixel mode

List of Setting Register


							Remarks					
Λ al al ma a a	L :4	Register	Initial	10	15	15.74	30	30	30.01	[frame/s]		
Address	bit	Name	Value	594	891	720	1782	2079	1440	[Mbps/lane]		
				44.5	29.7	28.3	14.9	14.9	14.9	1H period [µs]		
3008h	[7:0]			44.0	44.5 25.7 20.5 14.5 14.5							
3009h	[1:0]	BCWAIT_TIME	0FFh									
300Ah	[7:0]	CPWAIT_TIME	0B6h									
300Bh	[1:0]	VAVINIAGOE	01-				NI-			All assert are aster		
301Ch		WINMODE	0h)h			All pixel mode		
3022h		ADDMODE	0h			U)h		-	All pixel mode		
3024h	[7:0]		0041			0.0						
3025h		VMAX	8CAh			80	Ah					
3026h	[3:0]					I) ~			
3028h	[7:0]	HMAX	226h	CE4h	898h	7F0h	44Ch	44Ch	42Ah			
3029h	[7:0]											
3030h	• •	HREVERSE	0h				/ 1h			0: Nor. , 1: Inv.		
	[1]	VREVERSE	0h		1	0h	/ 1h	<u> </u>		0: Nor. , 1: Inv.		
3031h		ADBIT	1h	0h / 1h	0h / 1h	0h	0h / 1h	0h / 1h	0h	0: 10 bit, 1: 12 bit		
3032h	[0]	MDBIT	1h	0h / 1h	0h / 1h	0h	0h / 1h	0h / 1h	0h	0: 10 bit, 1: 12 bit		
3033h	[3:0]	SYS_MODE	4h	7h	5h	9h	4h	2h	8h			
3115h	[7:0]	INCKSEL1	00h									
3116h	[7:0]	INCKSEL2	28h			MI.						
3118h	[7:0]	INICIACELIA	0001-		0.							
3119h	[2:0]	INCKSEL3	0C0h		, 0	Refer to "IN	ICK setting	,				
311Ah	[7:0]		0501		4		_					
311Bh	[2:0]	INCKSEL4	0E0h		'							
311Eh		INCKSEL5	28h									
3200h				1								
to	[7:0]					Refer to "Re	egister Map	,,				
3BFFh												
4001h	[2:0]	LAMEMODE	3h			1	h			2lame		
4004h	[7:0]	TXCLCKES_F										
4005h		REQ	1290h			Refer to "IN	ICK setting	,				
400Ch		INCKSEL6	1h				· ·					
4018h	[7:0]											
4019h	[7:0]	TCLKPOST	00B7h	0067h	007Fh	006Fh	00B7h	00D7h	009Fh	Global timing		
401Ah		TCLKPREPAR										
401Bh	[7:0]		0067h	0027h	0037h	002Fh	0067h	007Fh	0057h	Global timing		
401Ch	[7:0]						1					
401Dh	[7:0]	TCLKTRAIL	006Fh	0027h	0037h	002Fh	006Fh	007Fh	0057h	Global timing		
401Eh	[7:0]											
401EII	[7:0]	TCLKZERO	01DFh	00B7h	00F7h	00BFh	01DFh	0237h	0187h	Global timing		
401FII 4020h	[7:0]											
4020h 4021h		THSPREPARE	006Fh	002Fh	003Fh	002Fh	006Fh	0087h	005Fh	Global timing		
	[7:0]											
4022h	[7:0]	THSZERO	00CFh	004Fh	006Fh	0057h	00CFh	00EFh	00A7h	Global timing		
4023h	[7:0]											
4024h	[7:0]	THSTRAIL	006Fh	002Fh	002Fh 003Fh 002Fh 006Fh 0087h 005Fh							
4025h	[7:0]											
4026h	[7:0]	THSEXIT	00B7h	0047h	Global timing							
4027h	[7:0]				005Fh	004Fh	00B7h	00DFh	0097h	ļ		
4028h	[7:0]	TLPX	005Fh	0027h	002Fh	0027h	005Fh	006Fh	004Fh	Global timing		
4029h	[7:0]											
4074h	[2:0]	INCKSEL7	0h			Refer to "IN	ICK setting	,				

						(CSI-2 ser	ial / 4lan	e			Remarks
			Initial	20 /	25 /	20	30.01 /	60	60	60	00	[from o/o]
Address	bit	Register Name	Value	25	30.01	30	60.03	60	60	60	90	[frame/s]
		Ivaille		594	720	891	1440	1485	1782	2079	2376	[Mbps/lane]
				22.3 / 17.8	17.8 / 14.9	14.9	14.9 / 7.5	7.5	7.5	7.5	5.0	1H period [μs]
3008h	[7:0]	BCWAIT TIME	0FFh			I						
3009h	[1:0]	DOWAIT_TIME	01111			Re	fer to "IN	ICK setti	ng"			
300Ah 300Bh	[7:0] [1:0]	CPWAIT_TIME	0B6h						Ü			
301Ch		WINMODE	0h				0	h				All pixel mode
3022h		ADDMODE	0h				0	h			. (All pixel mode
3024h	[7:0]										. (-)	
3025h 3026h	[7:0] [3:0]	VMAX	8CAh				8C	Ah				
3028h	[7:0]			672h /	500h /		42Ah /					
3029h	[7:0]	HMAX	226h	528h	42Ah	44Ch	215h	226h	226h	226h	16Eh	
3030h		HREVERSE	0h					/ 1h		<u> </u>		0: Nor. , 1: Inv.
	<u> </u>	VREVERSE	0h	4h / 0h	4h / 0h	05/45		/ 1h	05 / 45	0h / 4h	Ob	0: Nor. , 1: Inv.
3031h 3032h		ADBIT MDBIT	1h 1h	1h / 0h 1h / 0h	1h / 0h 1h / 0h	0h / 1h 0h / 1h	1h / 0h 1h / 0h	0h 0h	0h / 1h 0h / 1h	0h / 1h 0h / 1h	0h 0h	0: 10 bit, 1: 12 bit 0: 10 bit, 1: 12 bit
3032h		SYS MODE	4h	7h	9h	5h	8h_	8h	4h	2h	0h	0. 10 bit, 1. 12 bit
3115h		INCKSEL1	00h				18	7	1			
3116h	[7:0]	INCKSEL2	28h				V,					
3118h	[7:0]	INCKSEL3	0C0h			1	77,					
3119h 311Ah	[2:0]				4	Re	fer to "IN	ICK setti	ng"			
311Bh	[7:0] [2:0]	INCKSEL4	0E0h		4							
311Eh		INCKSEL5	28h									
3200h												
to 3BFFh	[7:0]			N		Re	fer to "Re	egister M	lap"			
4001h	[2:0]	LANEMODE	3h				3	h				4lane
4004h		TXCLCKES_F	1/									
4005h		REQ	1290h			Re	fer to "IN	ICK setti	ng"			
400Ch		INCKSEL6	1h						l			
4018h 4019h	[7:0] [7:0]	TCLKPOST	00B7h	0067h	006Fh	007Fh	009Fh	00A7h	00B7h	00D7h	00E7h	Global timing
401Ah		TCLKPREPAR				000=1		00==1	000=1		22251	
401Bh	[7:0]	E	0067h	0027h	002Fh	0037h	0057h	0057h	0067h	007Fh	008Fh	Global timing
401Ch	[7:0]	TCLKTRAIL	006Fh	0027h	002Fh	0037h	0057h	005Fh	006Fh	007Fh	008Fh	Global timing
401Dh 401Eh	[7:0] [7:0]											
401Fh	[7:0]	TCLKZERO	01DFh	00B7h	00BFh	00F7h	0187h	0197h	01DFh	0237h	027Fh	Global timing
4020h	[7:0]	THSPREPARE	006Fh	002Fh	002Fh	003Fh	005Fh	005Fh	006Fh	0087h	0097h	Global timing
4021h	[7:0]	THO INCL AND	000111	002111	002111	000111	003111	000111	000111	000711	003711	Global tilling
4022h 4023h	[7:0] [7:0]	THSZERO	00CFh	004Fh	004Fh 0057h 006Fh 00A7h 00AFh 00CFh 00EFh 010Fh							Global timing
4023h	[7:0]	T. 10 T =					00		000=	00.5=-	000	
4025h	[7:0]	THSTRAIL	006Fh	002Fh	002Fh	003Fh	005Fh	005Fh	006Fh	0087h	0097h	Global timing
4026h	[7:0]	THSEXIT	00B7h	0047h	004Fh	005Fh	0097h	009Fh	00B7h	00DFh	00F7h	Global timing
4027h 4028h	[7:0]			-								<u> </u>
4028h 4029h	[7:0] [7:0]	TLPX	005Fh	0027h	0027h	002Fh	004Fh	004Fh	005Fh	006Fh	007Fh	Global timing
4074h		INCKSEL7	0h			Re	fer to "IN	ICK setti	ng"			

SONY

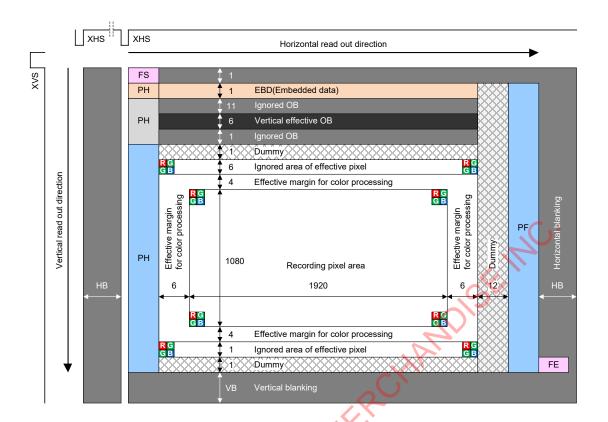
Pixel Array Image Drawing in All pixel mode

Drive Timing Chart for All pixel mode

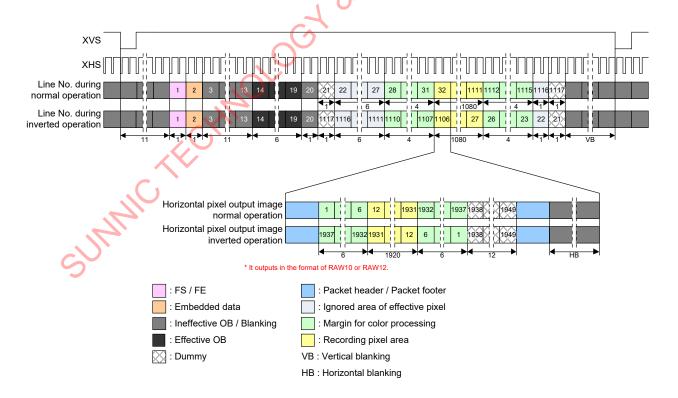
Horizontal/Vertical 2/2-line binning mode

List of Setting Register

					CSI-2 ser	rial / 2lane		Remarks		
Address	bit	Register	Initial	10	15	30	30	[frame/s]		
Addiess	DIL	Name	Value	594	891	1782	2079	[Mbps/lane]		
				44.5	29.7	14.9	14.9	1H period [µs]		
3008h	[7:0]			7.330		1 119	1 110	··· p ··· u [p··]		
3009h	[1:0]	BCWAIT_TIME	0FFh		Refer to "INCK setting"					
300Ah	[7:0]									
300Bh	[1:0]	CPWAIT_TIME	0B6h							
301Ch		WINMODE	0h		0h					
3020h	[0]	HADD	0h			h		All pixel mode Horizontal 2 binning		
3021h	[0]	VADD	0h			h	.(Vertical 2 binning		
3022h		ADDMODE	0h		1	h	. (-)	H/V 2/2-line binning		
3024h	[7:0]	-	-					J J		
3025h		VMAX	8CAh		80	Ah				
3026h	[3:0]						\S_\rac{1}{2}			
3028h	[7:0]									
3029h	[7:0]	HMAX	226h	CE4h	898h	44Ch	44Ch			
	[0]	HREVERSE	0h		0h	/ 1h		0: Nor. , 1: Inv.		
3030h	[1]	VREVERSE	0h			/ 1h		0: Nor. , 1: Inv.		
3031h		ADBIT	1h)h		10 bit		
3032h	[0]	MDBIT	1h			h		12 bit		
3033h		SYS MODE	4h	7h	5h	4h	2h			
30D9h	[4:0]	DIG_CLP_VST AET	06h			2h		H/V 2/2-line binning		
30DAh	[1:0]	DIG_VLP_VNU M	2h	1h				H/V 2/2-line binning		
3115h	[7:0]	INCKSEL1	00h	CA						
3116h	[7:0]	INCKSEL2	28h							
3118h	[7:0]	INCKSEL3	0C0h	, O						
3119h	[2:0]	INCRSELS	OCOII		Refer to "IN	ICK setting"				
311Ah	[7:0]	INCKSEL4	0E0h							
311Bh	[2:0]	INCROEL4	OLOIT							
311Eh	[7:0]	INCKSEL5	28h							
3200h		<i>></i> .C) `							
to	[7:0]				Refer to "Re	egister Map"				
3BFFh										
4001h	4	LAMEMODE	3h		1	h		2lame		
4004h	_	TXCLCKES_F	1290h							
4005h		RÉQ			Refer to "IN	ICK setting"				
400Ch	[0]	INCKSEL6	1h			T	T			
4018h	[7:0]	TCLKPOST	00B7h	0067h	007Fh	00B7h	00D7h	Global timing		
4019h	[7:0]			200.11	30	302.11	302.11			
401Ah	•	TCLKPREPAR	0067h	0027h	0037h	0067h	007Fh	Global timing		
401Bh	[7:0]	E			, , , , , , ,	, , , , , ,	,	9		
401Ch	[7:0]	TCLKTRAIL	006Fh	0027h	0037h	006Fh	007Fh	Global timing		
401Dh	[7:0]							9		
401Eh	[7:0]	TCLKZERO	01DFh	00B7h	00F7h	01DFh	0237h	Global timing		
401Fh	[7:0]							9		
4020h	[7:0]	THSPREPARE	006Fh	002Fh	003Fh	006Fh	0087h	Global timing		
4021h	[7:0]				-	-	-			
4022h	[7:0]	THSZERO	00CFh	004Fh	006Fh	00CFh	00EFh	Global timing		
4023h	[7:0]							J		


		Register	Initial			Remarks		
Address	bit	Name	Value	10	15	30	30	[frame/s]
	l l l l l l l l l l l l l l l l l l l		594	891	1782	2079	[Mbps/lane]	
4024h	[7:0]	THETDAIL	0005	002Fh	003Fh	006Fh	0087h	Clabal timeina
4025h	[7:0]	THSTRAIL	006Fh	002FII	003111	000111	000711	Global timing
4026h	[7:0]	THSEXIT	00B7h	0047h	005Fh	00B7h	00DFh	Global timing
4027h	[7:0]	ΙΠΟΕΛΙΙ		0047H				
4028h	[7:0]	TLPX	005Eh	0027h	00051	00551	00051-	Olahal timbiran
4029h	[7:0]	ILPX	005Fh	002711	002Fh	005Fh	006Fh	Global timing
4074h	[2:0]	INCKSEL7	0h					

SILVANIC LECHNOLOGY & WIERCHARDSELING.


						CSI-2 ser	ial / 4lane			Remarks		
Address	bit	Register	Initial	20	25	30	30.01	60	60	[frame/s]		
Address	Dit	Name	Value	594	720	891	1440	1782	2079	[Mbps/lane]		
				22.3	17.8	14.9	14.9	7.5	7.5	1H period [µs]		
3008h	[7:0]									poiled [po]		
3009h	[1:0]	BCWAIT_TIME	0FFh									
300Ah	[7:0]											
300Bh	[1:0]	CPWAIT_TIME	0B6h									
301Ch		WINMODE	0h		0h							
3020h	[0]	HADD	0h			1				All pixel mode Horizontal 2 binning		
3021h	[0]	VADD	0h				<u>''</u> h			Vertical 2 binning		
3022h		ADDMODE	0h			<u>'</u> 1				H/V 2/2-line binning		
3024h	[7:0]	ADDIVIOUE	011			'				11/V 2/2-IIIle billining		
3024H		VMAX	8CAh			8C	Δh		11			
3026h	[3:0]	VIVIAX	OCAII			00	ΛII					
3028h								C	V			
3029h	[7:0] [7:0]	HMAX	226h	672h	4FFh	44Ch	42Ah	226h	226h			
302911	[0]	HREVERSE	0h			0h ,	/ 1h	()		0: Nor. , 1: Inv.		
3030h	[1]	VREVERSE	0h			0h /	-	7		0: Nor. , 1: Inv.		
3031h	•	ADBIT	1h			0117	. 17			10 bit		
3032h	[0]	MDBIT	1h							12 bit		
3032h		SYS MODE	4h	7h	1h 7h 9h 5h 8h 4h 2h					12 bit		
303311	[3.0]	DIG CLP VST	411	711	311	011	OII	411	211			
30D9h	[4:0]	AET	06h		02h							
30DAh	[1:0]	DIG_VLP_VNU M	2h		H/V 2/2-line binning							
3115h	[7:0]	INCKSEL1	00h									
3116h	[7:0]	INCKSEL2	28h		1							
3118h	[7:0]	INCKSEL3	0C0h		9							
3119h	[2:0]	INCRSELS	ocon			Refer to "IN	CK setting"	,				
311Ah	[7:0]	INCKSEL4	OFOR									
311Bh	[2:0]	INCKSEL4	0E0h									
311Eh	[7:0]	INCKSEL5	28h									
3200h												
to	[7:0]					Refer to "Re	egister Map	"				
3BFFh												
4001h	[2:0]	LANEMODE	3h			3	h			4lane		
4004h	[7:0]	TXCLCKES_F	1290h									
4005h	[7:0]	REQ	129011			Refer to "IN	ICK setting"	•				
400Ch	[0]	INCKSEL6	1h									
4018h	[7:0]	TCLKPOST	00B7h	0067h	006Fh	00756	009Fh	00B7h	00D7h	Clobal timina		
4019h	[7:0]	TCLKPOST	006/11	006711	000F11	007Fh	009F11	006711	ווילטטט	Global timing		
401Ah	[7:0]	TCLKPREPAR	00075	00076	00054	00076	00575	00075	00756	Clabal timein a		
401Bh	[7:0]	E	0067h	0027h	002Fh	0037h	0057h	0067h	007Fh	Global timing		
401Ch	[7:0]	TOLKTDAIL	0005	00076	00056	00076	00575	00054	00756	Clab al timain a		
401Dh	[7:0]	TCLKTRAIL	006Fh	0027h	002Fh	0037h	0057h	006Fh	007Fh	Global timing		
401Eh	[7:0]	TOLKZEDO	01054	00P7h	00BEh	00575	01076	01056	02276	Clobal timina		
401Fh	[7:0]	TCLKZERO	01DFh	00B7h	00BFh	00F7h	0187h	01DFh	0237h	Global timing		
4020h	[7:0]	THSPREPARE	006Fh	002Fh	002Fh	003Fh	005Fh	006Fh	0087h	Global timing		
4021h	[7:0]	HIGHNERARE	000-11	UUZIII	0021-11	0001-11	0001-11	0001-11	000/11	Siobai tillillig		
4022h	[7:0]	THSZERO	00CFh	004Fh	0057h	006Fh	00A7h	00CFh	00EFh	Global timing		
4023h	[7:0]	THOZERO	3001-11	UU T I II	000711	000111	UUAIII	000111	OULITI	Siobai tilling		

		Register	Initial				Remarks			
Address	Address bit Name		Value	20	25	30	30.01	60	60	[frame/s]
				594	720	891	1440	1782	2079	[Mbps/lane]
4024h	[7:0]	THSTRAIL	006Fh	002Fh	002Fh	003Fh	005Fh	006Fh	0087h	Clobal timing
4025h	[7:0]	INSTRAIL	UUGFII	002FII	002111	003111	003111	000111	000711	Global timing
4026h	[7:0]	THSEXIT	00B7h	0047h	004Eb	005Fh	0097h	00B7h	00DFh	Global timing
4027h	[7:0]	INSEAII		0047n	004Fh	uusen	009711			
4028h	[7:0]	TLPX	005Fh	0027h	00071	002Fh	00451	00554	00054	Olahal timin
4029h	[7:0]	ILPA	uusen	002711	0027h	UUZFII	004Fh	005Fh	006Fh	Global timing
4074h	[2:0]	INCKSEL7	0h							

SIMME TECHNOLOGY & WIERCHAMPORTE SIMME SIMME

Pixel Array Image Drawing in Horizontal /Vertical 2/2-line binning mode

Drive Timing Chart for Horizontal /Vertical 2/2-line binning mode

In "2/2 binning", pixels binning by normal direction and inverted direction are shifted by the same color one pixel.

Window Cropping Mode

Sensor signals are cut out and read out in arbitrary positions.

This function support All-pixel mode, Horizontal/Vertical 2/2-line binning mode, Multiple exposure HDR, Digital overlap HDR and Vertical / Horizontal direction-normal / inverted readout mode of each modes.

Cropping position is set, regarding effective pixel with dummy start position as origin (0, 0) in normal mode direction. That is a start point which is an offset from the origin and cropping width.

Cropping is available from each driving mode and horizontal period is fixed to the value at same as the mode before window cropping. Pixels cropped by horizontal cropping setting are output with left shifted and that extends the horizontal blanking period.

Window position and size is used fixed value. (An ignore frame is output when it is changed.)

Window cropping image is shown in the figure below.

The same physical pixel area as all-pixel mode is cropped when start position and width are same setting in Horizontal/Vertical 2/2-line binning mode, Multiple exposure HDR and Digital overlap HDR.

At inverted mode, it is the same as the "Recording pixel with Effective margin for color processing (green

rectangle in the figure) " area in normal mode.

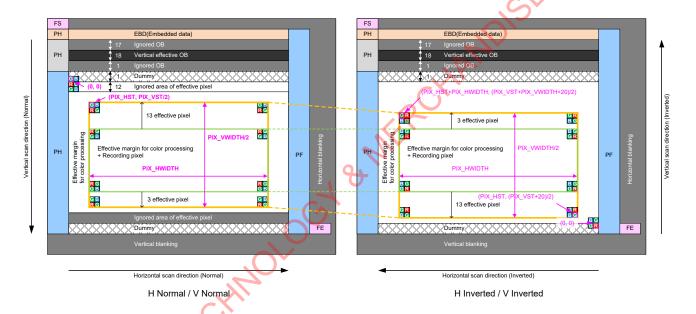


Image Drawing of Window Cropping Mode in Horizontal/Vertical, normal/inverted direction

Supplement) The first readout pixel color is "G" at windows cropping mode in inverted direction.

SONY

List of Setting Register

Register	Register	details	Initial	Setting value	Remarks	
register	Address	bit	value	Setting value	Remarks	
WINMODE	301Ch	[3:0]	0h	4h: Window Cropping mode		
DIV LICT	3040h	[7:0]	00006	Effective pixel Start position	Charified as a multiple of 2	
PIX_HST	3041h	[4:0]	0000h	(Horizontal direction)	Specified as a multiple of 2	
PIX HWIDTH	3042h	[7:0]	0F18h	Effective pixel Cropping width	Specified as a multiple of 24	
FIX_HWIDTH	3043h	[4:0]	UF TOIT	(Horizontal direction)	Specified as a multiple of 24	
	3044h	[7:0]		Effective pixel Star position		
PIX_VST			0000h	(Vertical direction)	Specified as a multiple of 4	
	3045h	[4:0]		Designated in V units (Line×2)		
	3046h	[7:0]		Effective pixel Cropping width		
PIX_VWIDTH			1120h	(Vertical direction)	Specified as a multiple of 4	
_	3047h	[4:0]		Designated in V units (Line×2)		

Restrictions on Window cropping mode

The register settings should satisfy following conditions:

Set WINMODE: 4h.

◆ PIX_VST, PIX_VWIDTH

Set PIX_VST, PIX_VWIDTH to a multiple of 4.

$$PIX_VST = n_1 \times 4$$

 $PIX_VWIDTH = n_2 \times 4$

Cropped starting position and width is set multiple of 2 addresses, because PIX_VST, PIX_VWIDTH is internal V address unit.

Cropped area is needed to set pre 13 pixel, rear 3 pixel for signal processing.

◆ PIX_HST, PIX_HWIDTH

Set PIX_HST to a multiple of 2. Set PIX_HWIDTH to a multiple of 24.

Where n_{1~4} are integer equal or more than 0.

 V_{TTL} (1frame line length or VMAX) \geq (PIX_VWIDTH / 2) + 46 Set V_{TTL} to 1222 or more.

V_{TTL} ≥ 1222

◆ Frame rate on Window cropping mode

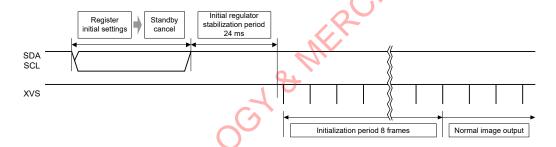
Frame rate [frame/s] = $1 / (V_{TTL} \times (1H \text{ period}))$

1H period (unit: [s]): Set "1H period" or more in the table of "Operating mode" before cropping mode.

Description of Various Function

Standby Mode

This sensor stops its operation and goes into standby mode which reduces the power consumption by writing "1" to the standby control register STANDBY. Standby mode is also established after power-on or other system reset operation.


List of Standby Mode Setting

SUMMICTER

Register	Register details		Initial	Sotting value	Remarks	
Register	Address	bit	value	Setting value	Remarks	
STANDBY	3000h	[0]	1h	1h: Standby 0h: Operating	Register communication is executed in standby mode.	

The serial communication registers hold the previous values. However, the address registers transmitted in standby mode are overwritten. The serial communication block operates even in standby mode, so standby mode can be canceled by setting the STANDBY register to "0". Some time is required for sensor internal circuit stabilization after standby mode is canceled. After standby mode is canceled, a normal image is output from the 9 frames after internal regulator stabilization 24 ms or more.

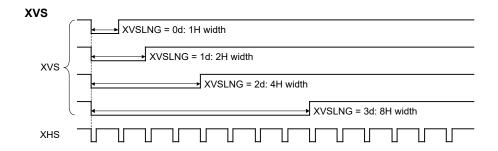
For details of the sequence of setting and cancel standby mode, see the sensor setting flow after power on.

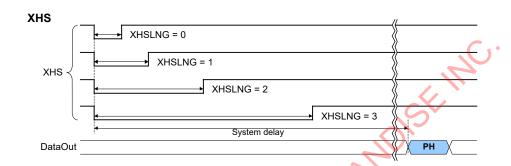
Sequence from Standby Cancel to Stable Image Output

Slave Mode and Master Mode

The sensor can be switched between slave mode and master mode. The switching is made by the XMASTER register. Establish the XMASTER status before canceling the system reset. (Do not switch this register status during operation.)

Input a vertical sync signal to XVS and input a horizontal sync signal to XHS when a sensor is in slave mode. For sync signal interval, input data lines to output for vertical sync signal and 1H period designated in each operating mode for horizontal sync signal. See the section of "Operating mode" for the number of output data line and 1H period.


Set the XMSTA register 0h in order to start the operation after setting to master mode. In addition, set the count number of sync signal in vertical direction by the VMAX [19:0] register and the clock number in horizontal direction by the HMAX [15:0] register. See the description of Operation Mode for details of the section of "Operating Modes".


List of Slave and Master Mode Setting

Dogistor	Register details		Initial	Cotting value	Demarks
Register	Address	bit	value	Setting value	Remarks
XMASTER	3003h	[0]	0h	0h: Master mode 1h: Slave mode	5

List of Register in Master Mode

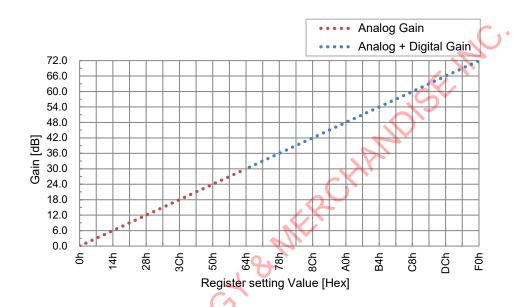
Register	Register d	etails	Initial	Setting value	Remarks
register	Address	bit	bit value		Remaiks
XMSTA	3002h	[0]	1h	1h: Master operation ready 0h: Master operation start	The master operation starts by setting 0.
	3024h	[7:0]		Coatha itawa af a ah duiya	Line number new frame
VMAX [19:0]	3025h	[7:0]	008CAh	See the item of each drive mode.	Line number per frame
	3026h	[3:0]		mode.	designated
⊔MA∨ [15:0]	3028h	[7:0]	0226h	See the item of each drive	Clock number per line
HMAX [15:0]	3029h	[7:0]	022611	mode.	designated
XVSOUTSEL [1:0]	2000	[1:0]	2h	0h: Fixed to Low 2h: VSYNC output	
XHSOUTSEL [1:0]	30C0h	[3:2]	2h	0h: Fixed to Low 2h: HSYNC output	
XVS_DRV [1:0]	20011	[1:0]	3h	0h: XVS output (Master mode) 3h: Hi-z (Slave mode)	
XHS_DRV [1:0]	30C1h	[3:2]	3h	0h: XHS output (Master mode) 3h: Hi-z (Slave mode)	
XVSLNG [1:0]	30CCh	[5:4]	0h	0h: 1H, 1h: 2H, 2h: 4H, 3h: 8H	XVS low level pulse width designated
XHSLNG [1:0]	30CDh	[6:5]	0h	0h: 16clock, 1h: 32clock 2h: 64clock, 3h: 128clock See the next	XHS low level pulse width designated

XVS/XHS output waveform in sensor master mode

SUMMICTECHMOLC

The XVS and XHS are output in timing that set 0 to the register XMSTA. If set 0 to XMSTA during standby, the XVS and XHS are output just after standby is released. The XVS and XHS are output asynchronous with other input or output signals. In addition, the output signals are output with an undefined latency time (system delay) relative to the XHS. Therefore, refer to the sync codes output from the sensor and perform synchronization.

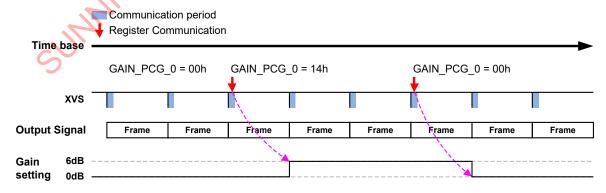
SONY IMX415-AAQR-C


Gain Adjustment Function

The Programmable Gain Control (PGC) of this device consists of the analog block and digital block. The total of analog gain and digital gain can be set up to 72dB by the GAIN_PCG_0 [8:0] register setting. The same setting is applied in all colors.

The value which is 10/3 times the gain is set to register. (0.3 dB step)

Example)


When set to 6 dB: $6 \times 10/3 = 20d$; GAIN_PCG_0 = 14h When set to 12.6 dB: $12.6 \times 10/3 = 42d$; GAIN_PCG_0 = 2Ah

List of PGC Register

Pagiator	Register details	Initial value	Setting value	Remarks	
Register	Address bit	iiiiliai value	Setting range	Remarks	
GAIN_PCG_0	3090h [7:0]	0006	00h-F0h	Setting value: Gain [dB] × 10/3 (0.3 dB step)	
[8:0]	3091h [0]	000h	(0d-240d)		

The gain setting is reflected at the next frame that the communication is performed as shown below.

Gain Reflection Timing

Black Level Adjustment Function

The black level offset (offset variable range: 000h to 3FFh) can be added relative to the data in which the digital gain modulation was performed by the BLKLEVEL [9:0] register.

Note that the offset unit changes according to the output bit setting.

When the output data length is 10-bit output, increasing the register setting value by 1h increases the black level by 1 LSB. When the output data length is 12-bit output, increasing the register setting value by 1h increases the black level by 4 LSB.

Use with values shown below is recommended.

10-bit output: 032h (50d) 12-bit output: 032h (200d)

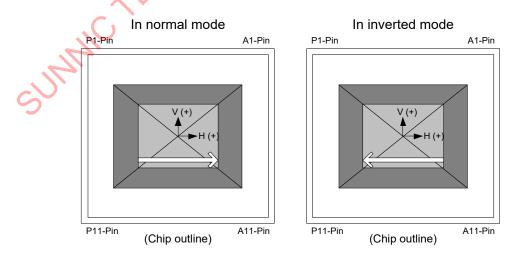
List of Black Level Adjustment Register

	_				
Register	Register	details	Initial value	Setting value	
Register	Address	bit	IIIIIai vaiue	Setting value	
BLKLEVEL	30E2h	[7:0]	032h	000h to 3FFh	
[9:0]	30E3h	[1:0]	03211	OOOH to SPPH	
SUN		HINO	OCT &	MERCHIA	

SONY IMX415-AAQR-C

Normal Operation and Inverted Operation

The sensor readout direction (normal / inverted) in vertical direction can be switched by VREVERSE register settings and in horizontal direction can be switched by the HREVERSE register setting. See the section of "Operating Modes" for the order of readout lines in normal and inverted modes. See the section of "List of Setting Register" for the other register settings.


One invalid frame is generated when reading immediately after the readout vertical direction change in order to switch the normal operation and inversion between frames.

List of Drive Direction Setting Register

Register	Register	details	Initial value	Sotting value		
	Address	bit	IIIIIIai vaiue	Setting value		
HREVERSE	3030h	[0]	0h	0h: Normal 1h: Inverted		
VREVERSE		[1]	0h	0h: Normal 1h: Inverted		

Normal and Inverted Drive Outline in Vertical Direction (TOP VIEW)

Normal and Inverted Drive Outline in Horizontal Direction (TOP VIEW)

Shutter and Integration Time Settings

This sensor has a variable electronic shutter function that can control the integration time in line units. In addition, this sensor performs rolling shutter operation in which electronic shutter and readout operation are performed sequentially for each line.

Note) For integration time control, an image which reflects the setting is output from the frame after the setting changes.

Example of Integration Time Setting

The sensor's integration time is obtained by the following formula.

Integration time = 1 frame period - SHR0 × (1H period) + Toffset

Where Toffset is 1.79 [µs] at AD 10bit mode and 2.68 [µs] at AD 12bit mode.

- *1 The frame period is determined by the input XVS when the sensor is operating in slave mode, or the register VMAX value in master mode. The frame period is designated in 1H units, so the time is determined by (Number of lines × 1H period).
- *2 See "Operating Modes" for the 1H period.

In this section, the shutter operation and storage time are shown as in the figure below with the time sequence on the horizontal axis and the vertical address on the vertical axis. For simplification, shutter and readout operation are noted in line units.

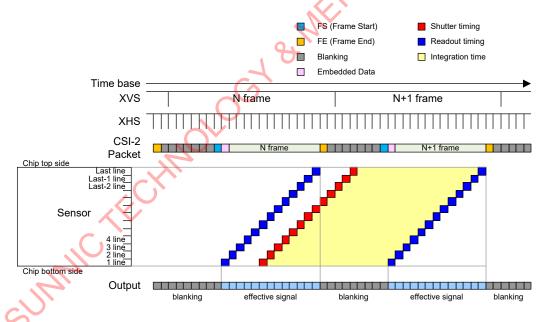


Image Drawing of Shutter Operation

Normal Exposure Operation (Controlling the Integration Time in 1H Units)

The integration time can be controlled by varying the electronic shutter timing. In the electronic shutter settings, the integration time is controlled by the SHR0 [19:0] register. Set SHR0 [19:0] to a value between 8 and (Number of lines per frame - 4). When the sensor is operating in slave mode, the number of lines per frame is determined by the XVS interval (number of lines), using the input XHS interval as the line unit.

When the sensor is operating in master mode, the number of lines per frame is determined by the VMAX register. The number of lines per frame differs according to the operating mode.

Registers Used to Set the Integration Time in 1H Units

Pogistor	Register d	etails	Initial value	Setting value	
Register	Address	bit	IIIIIIai vaiue		
	3050h	[7:0]		Sets the shutter sweep time. 8 to (Number of lines per frame - 4) * Others: Setting prohibited	
SHR0 [19:0]	3051h	[7:0]	00066h		
	3052h	[3:0]			
	3024h	[7:0]		Sets the number of lines per frame	
VMAX [19:0]	3025h	[7:0]	008CAh	(only in master mode). See "Operating Modes" for the setting value in each	
	3026h	[3:0]		mode.	

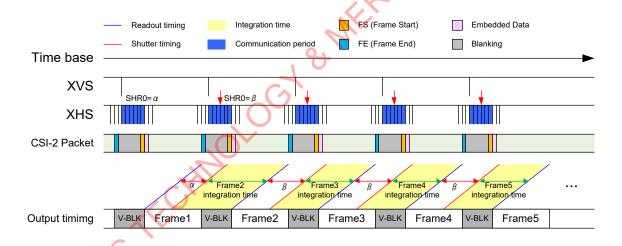


Image Drawing of Integration Time Control within a Frame

Long Exposure Operation (Control by Expanding the Number of Lines per Frame)

Long exposure operation can be performed by lengthening the frame period.

When the sensor is operating in slave mode, this is done by lengthening the input vertical sync signal (XVS) pulse interval.

When the sensor is operating in master mode, it is done by designating a larger register VMAX [19:0] value compared to normal operation. When the integration time is extended by increasing the number of lines, the rear V blanking increases by an equivalent amount.

Although the maximum value of long exposure operation changes in each mode, the maximum of long time exposure is approximately 1 s.

When set to a number of V lines or more than that noted for each operating mode, the imaging characteristics are not guaranteed during long exposure operation.

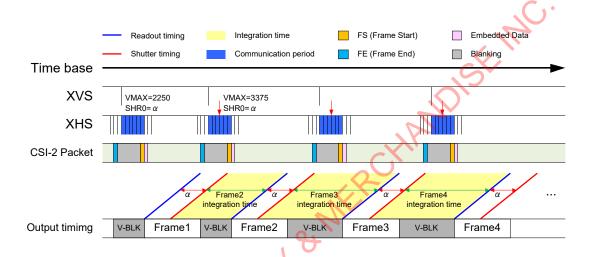


Image Drawing of Long Integration Time Control by Adjusting the Frame Period

SUMMIC FECHINO

Example of Integration Time Settings

The example of register setting for controlling the storage time is shown below.

Example of Integration Time Settings

Operation	Sensor sett	ting (register)	Integration time	
Operation	VMAX*	SHR0**	Integration time	
		2246	4H + T _{offset}	
		:	:	
All-pixel scan mode	2250	N	(2250 - N) H + T _{offset}	
		:	:	
		8	2242H + T _{offset}	70
	CHINC	CT &	ne VMAX value (M) – 4".	
SUMMICT				

Signal Output CSI-2 output

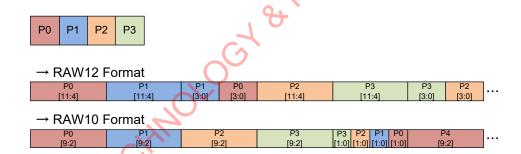
The output formats of this sensor support the following modes.

CSI-2 serial 2 Lane / 4 Lane, RAW10 / RAW12

The 2 Lane / 4 Lane serial signal output method using this sensor is described below.

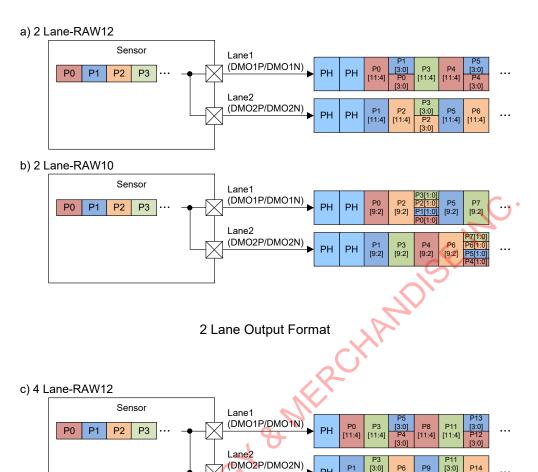
Complied with the CSI-2, data is output using 2 Lane / 4 Lane. The image data is output from the CSI-2 output pin. The DMO1P / DMO1N are called the Lane1 data signal, the DMO2P / DMO2N are called the Lane2 data signal, the DMO3P / DMO3N are called the Lane3 data signal, the DMO4P / DMO4N are called the Lane4 data signal. In addition, the clock signals are output from DCKP / DCKN of the CSI-2 pins.

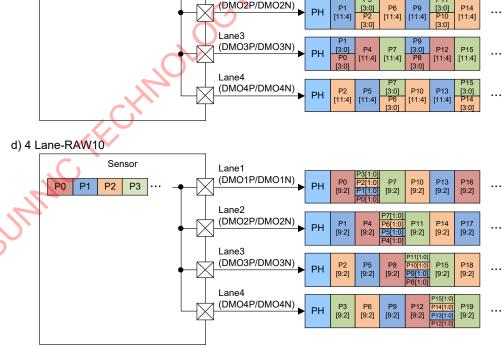
In 2 Lane mode, data is output from Lane1 and Lane2. In 4 Lane mode, data is output from Lane1, Lane3, Lane4


The bit rate maximum value is 2376 Mbps / Lane in 4 Lane mode and 2079 Mbps / Lane in 2 Lane mode.

The select of RAW10 / RAW12 is set by the register: MDBIT [0]. The number of output lanes is set by the register: LANEMODE [2:0].

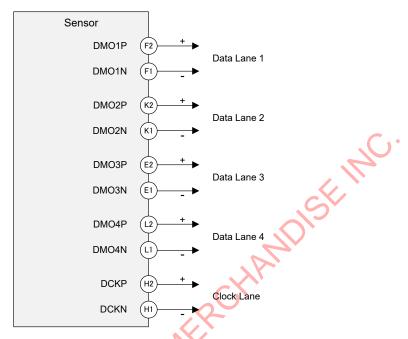
Unused lanes output signals conformed to MIPI standard.


B : (Register d	letails	Initial	Setting value
Register	Address	bit	value	Scaring value
MDBIT	3032h	[0]	1h	0h: RAW10 1h: RAW12
LANEMODE [2:0]	4011h	[2:0]	3h	1h: 2 Lane 3h: 4 Lane


The formats of RAW12 and RAW10 are shown below.

The Example of Format of RAW12 / RAW10

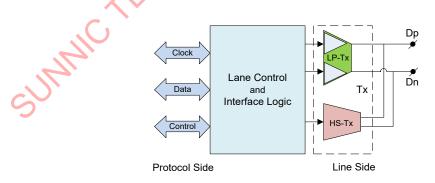
The each formal of 2 Lane and 4 Lane are shown below.



4 Lane Output Format

MIPI Transmitter

Output pins (DMOP1, DMOM1, DMOP2, DMOM2, DMOP3, DMOM3, DMOP4, DMOM4, DCKP, DCKM) are described in this section.



Relationship between Pin Name and MIPI Output Lane

The pixel signals are output by the CSI-2 High-speed serial interface. See the MIPI Standard

- MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.20.00
- MIPI Alliance Specification for D-PHY Version 1.20.00

The CSI-2 transfers one bit with a pair of differential signals. The transmitter outputs differential current signal after converting pixel signals to it. Insert external resistance in differential pair in a series or use cells with a built-in resistance on the Receiver side. When inserting an external resistor, as close as possible to the Receiver. The differential signals maintain a constant interval and reach the receiver with the shortest wiring length possible to avoid malfunction. The maximum bit rate of each Lane is 2376 Mbps / Lane.

Universal Lane Module Functions

Number of Internal A/D Conversion Bits Setting

The number of internal A/D conversion bits can be selected from 10 bits or 12 bits by the register ADBIT. See the section of "Operating Modes" for the correspondence with each mode.

List of Bit Width Selection

Pagiator	Register deta	ails	Initial value	Sotting value
Register	Address	bit	IIIIIIai vaiue	Setting value
ADBIT	3031h	[0]	1h	0: 10 bit 1: 12 bit

Output Signal Range

In CSI-2 output mode, the sensor output has either a 10 bit or 12 bit gradation, and the maximum output value is the 3FFh value (10 bit output) and the FFFh one (12 bit output).

The output range for each output gradation is shown in the table below.

Output Gradation and Output Range (CSI-2 Output)

	Outpu	t value
Output gradation	Min.	Max.
10 bit	000h	3FFh
12 bit	000h	FFFh

SONY

IMX415-AAQR-C

INCK Setting

The available operation mode varies according to INCK frequency. Input either 24 MHz, 27 MHz, 37.125 MHz, 72 MHz or 74.25 MHz for INCK frequency. The INCK setting register and the list of INCK setting are shown in the table below.

In the MIPI Alliance Specification for D-PHY Version 1.2,

when operating above 1500 Mbps, an initial deskew sequence shall be transmitted before High-Speed Data Transmission. When operating at or below 1500 Mbps, the transmission of the initial deskew sequence is optional. When operating at or above 1440 Mbps, this Sensor transmits the initial deskew burst.

INCK Setting Register

Data rate: 2376Mbps / lane

	Register	Register details		INCK			
Register	Address	Bit	Initial value	27	37.125	74.25	
	Address	DIL	value	[MHz]	[MHz]	[MHz]	
BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh	
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h	
SYS_MODE	3034h	[3:0]	4h	0h	0h	0h	
INCKSEL1	3115h	[7:0]	00h	00h	00h	00h	
INCKSEL2	3116h	[7:0]	28h	23h	24h	28h	
INCKSEL3	3119-18h	[10:0]	0C0h	108h	100h	100h	
INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h	
INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h	
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h	
INCKSEL6	400Ch	[0]	1h	1h	1h	1h	
INCKSEL7	4074h	[2:0]	0h 🔍	√ 0h	0h	0h	

Data rate: 2079Mbps / lane

	Register	details	Initial		INCK	
Register	Address	bit	value	27	37.125	74.25
	Address	Dit	value	[MHz]	[MHz]	[MHz]
BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h
SYS_MODE	3034h	[3:0]	4h	2h	2h	2h
INCKSEL1	3115h	[7:0]	00h	00h	00h	00h
INCKSEL2	3116h	[7:0]	28h	23h	24h	28h
INCKSEL3	3119-18h	[10:0]	0C0h	0E7h	0E0h	0E0h
INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h
INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h
INCKSEL6	400Ch	[0]	1h	1h	1h	1h
INCKSEL7	4074h	[2:0]	0h	0h	0h	0h

Data rate: 1782Mbps / lane

	Register	details	Initial		INCK	
Register	Address	bit	value	27	37.125	74.25
	Address	DIL	Value	[MHz]	[MHz]	[MHz]
BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h
SYS_MODE	3034h	[3:0]	4h	4h	4h	4h
INCKSEL1	3115h	[7:0]	00h	00h	00h	00h
INCKSEL2	3116h	[7:0]	28h	23h	24h	28h
INCKSEL3	3119-18h	[10:0]	0C0h	0C6h	0C0h	0C0h
INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h
INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h
INCKSEL6	400Ch	[0]	1h	1h	1h	1h
INCKSEL7	4074h	[2:0]	0h	0h	0h	0h

Data rate: 1485 Mbps / lane

	Register	details	Initial		INCK	4
Register	Address	bit	value	27	37.125	74.25
	Address	DIL	7 41.41	[MHz]	[MHz]	[MHz]
BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h
SYS_MODE	3034h	[3:0]	4h	8h	8h	8h
INCKSEL1	3115h	[7:0]	00h	00h	00h	00h
INCKSEL2	3116h	[7:0]	28h	23h	24h	28h
INCKSEL3	3119-18h	[10:0]	0C0h	0A5h	0A0	0A0h
INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h
INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h
INCKSEL6	400Ch	[0]	1h	1h	1h	1h
INCKSEL7	4074h	[2:0]	0h	0h	0h	0h

Data rate: 1440Mbps / lane

	Register	details	Initial	IN	CK
Register	Address	bit	value	24 [MHz]	72 [MHz]
BCWAIT_TIME	3009-08h	[9:0]	0FFh	54h	F8h
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	3Bh	B0h
SYS_MODE	3034h	[3:0]	4h	8h	8h
INCKSEL1	3115h	[7:0]	00h	00h	00h
NCKSEL2	3116h	[7:0]	28h	23h	28h
INCKSEL3	3119-18h	[10:0]	0C0h	0B4h	0A0h
INCKSEL4	311B-1Ah	[10:0]	0E0h	0FCh	0E0h
INCKSEL5	311Eh	[7:0]	28h	23h	28h
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	0600h	1200h
INCKSEL6	400Ch	[0]	1h	1h	1h
INCKSEL7	4074h	[2:0]	0h	0h	0h

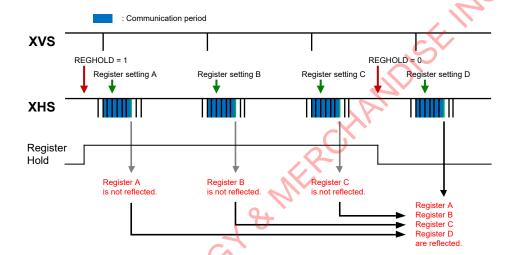
Data rate: 891Mbps / lane

		Register	details	Initial		INCK		
	Register	Address	bit	value	27	37.125	74.25	
		Address	DIL	value	[MHz]	[MHz]	[MHz]	
	BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh	
	CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h	
	SYS_MODE	3034h	[3:0]	4h	5h	5h	5h	
	INCKSEL1	3115h	[7:0]	00h	00h	00h	00h	
	INCKSEL2	3116h	[7:0]	28h	23h	24h	28h	
	INCKSEL3	3119-18h	[10:0]	0C0h	0C6h	0C0h	0C0h	
	INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h	
	INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h	, C1°
	TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h	
	INCKSEL6	400Ch	[0]	1h	0h	0h	0h	
	INCKSEL7	4074h	[2:0]	0h	1h	1h	1h	CE MO.
) 2	ıta rate: 720Mbps / la	ane						1/5
				ı	1			
		Register	details	Initial	IN	CK	0	
	Register	Address	bit	value	24 [MHz]	72 [MHz]	1	
	BCWAIT_TIME	3009-08h	[9:0]	0FFh	54h	F8h		

Data rate: 720Mbps / lane

	Register	details	Initial	IN	CK
Register	Address	bit	value	24 [MHz]	72 [MHz]
BCWAIT_TIME	3009-08h	[9:0]	0FFh	54h	F8h
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	3Bh	B0h
SYS_MODE	3034h	[3:0]	4h	9h	9 h
INCKSEL1	3115h	[7:0]	00h	00h	00h
INCKSEL2	3116h	[7:0]	28h 🔍	23h	28h
INCKSEL3	3119-18h	[10:0]	0C0h	0B4h	0A0h
INCKSEL4	311B-1Ah	[10:0]	0E0h	0FCh	0E0h
INCKSEL5	311Eh	[7:0]	28h	23h	28h
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	0600h	1200h
INCKSEL6	400Ch	[0]	1h	0h	0h
INCKSEL7	4074h	[2:0]	0h	1h	1h

Data rate: 594Mbps / lane


	Register	Register details		INCK			
Register	Address	bit	Initial value	27	37.125	74.25	
. (1)	Address	DIL	Value	[MHz]	[MHz]	[MHz]	
BCWAIT_TIME	3009-08h	[9:0]	0FFh	05Dh	07Fh	0FFh	
CPWAIT_TIME	300B-0Ah	[9:0]	0B6h	042h	05Bh	0B6h	
SYS_MODE	3034h	[3:0]	4h	7h	7h	7h	
INCKSEL1	3115h	[7:0]	00h	00h	00h	00h	
INCKSEL2	3116h	[7:0]	28h	23h	24h	28h	
INCKSEL3	3119-18h	[10:0]	0C0h	084h	080h	080h	
INCKSEL4	311B-1Ah	[10:0]	0E0h	0E7h	0E0h	0E0h	
INCKSEL5	311Eh	[7:0]	28h	23h	24h	28h	
TXCLKESC_FREQ	4005-04h	[15:0]	1290h	06C0h	0948h	1290h	
INCKSEL6	400Ch	[0]	1h	0h	0h	0h	
INCKSEL7	4074h	[2:0]	0h	1h	1h	1h	

Register Hold Setting

V reflected register setting can be transmitted with divided to several frames and it can be reflected globally at a certain frame by the register REGHOLD. Setting REGHOLD = 1 prevents the registers that set thereafter from being reflected at the frame reflection timing. The registers that are set when setting REGHOLD = 1 are reflected globally by setting REGHOLD = 0 at the desired frame to reflect the register.

Register Hold Setting Register

Register	Register details		Initial value	Sotting value
Register	Address	bit	IIIIIai value	Setting value
REGHOLD	3001h	[0]	0h	0: Invalid 1: Valid (Register hold)

Register Hold Setting

Mode Transitions

The Mode transition between operations is shown below. These examples shown in case that setting is completed within one communication timing.

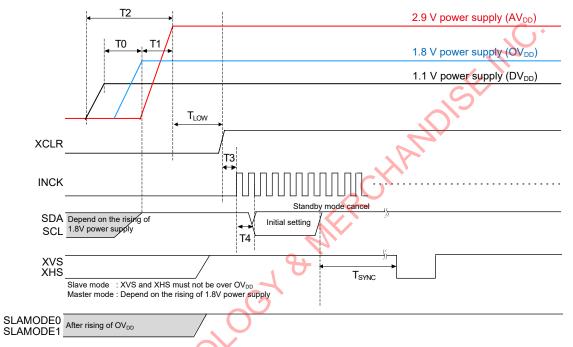
List of Mode Transition

Т	State				
Horizontal direction normal	\rightarrow	Horizontal direction inverted	Via the Standby state		
Horizontal direction inverted	Horizontal direction inverted → Horizontal direction normal				
All-pixel scan mode					
Window cropping mode					
Vertical direction normal	Via the Standby state				
Vertical direction inverted	is unnecessary. One invalid frame is				
Vertical direction line number change (Master mode : VMAX change, Slave mode : XVS interval change)					
Horizontal direction 1H period change (Master mode : HMAX change, Slave mode : XHS interval change)					
 Transition between modes other than ab Change the input frequency of INCK *1 Change the register setting noted "S" in 	Via the standby state is necessary.				

When changing input INCK frequency, care should be taken not to be input pulses whose width are shorter than the High / Low level width in front and behind of the INCK pulse at the frequency change. If the pulses above generate at the frequency change, change INCK frequency during system reset in the state of XCLR = Low, and then perform system clear in the state of XCLR = High following the item of "Power on sequence" in the section of "Power on / off sequence". Execute initial setting again because the register settings become default state after system clear.

Other Function

This sensor has the function as below. About detail, refer to each application note.

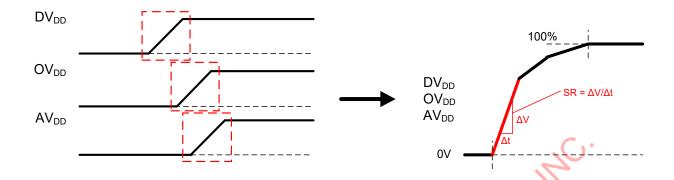

- Digital overlap HDR (2 / 3 frame)
- Multiple exposure HDR (2 / 4 frame)
- Additional Function of Synchronizing Sensors

SUMMIC TECHNOLOGY & MERCHANDISE INC.

Power-on and Power-off Sequence

Power-on sequence

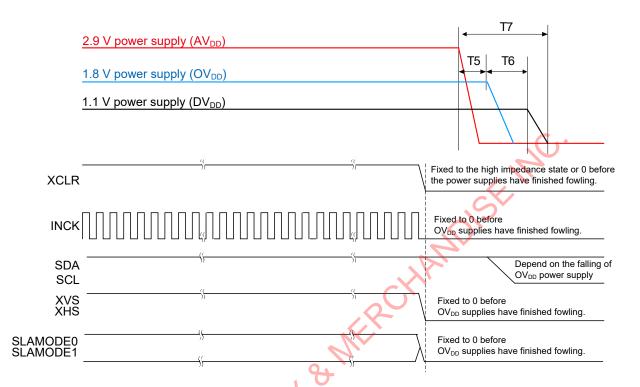
- 1. Turn On the power supplies so that the power supplies rise in order of 1.1 V power supply (DV_{DD}) \rightarrow 1.8 V power supply (OV_{DD}) \rightarrow 2.9 V power supply (AV_{DD}). In addition, all power supplies should finish rising within 200 ms.
- 2. The register values are undefined immediately after power-on, so the system must be cleared. Hold XCLR at Low level for 500 ns or more after all the power supplies have finished rising. (The register values after a system clear are the default values.)
- 3. The system clear is applied by setting XCLR to High level. The maser clock input after setting the XCLR pin to High level.
- 4. Make the sensor setting by register communication after the system clear.


Power-on Sequence

Item	Symbol	Min.	Max.	Unit
1.1 V power supply rising → 1.8 V power supply rising	T0	0	_	ns
1.8 V power supply rising → 2.9 V power supply rising	T1	0		ns
Rising time of all power supply	T2		200	ms
2.9 V power supply rising → Clear OFF	T _{LOW}	500	_	ns
Clear OFF → INCK rising	Т3	1	_	μs
Clear OFF → Communication start	T4	20	_	μs
Standby OFF (communication) → External input XHS, XVS (slave mode only)	Tsync	24	_	ms

SONY

Slew Rate Limitation of Power-on Sequence


Conform the slew rate limitation shown below when power supply change 0 V to each voltage (0 % to 100 %) in power-on sequence.

Item	Symbol	Power supply	Min.	Max.	Unit	Remarks
		DV _{DD} (1.1 V)	_	25	mV/μs	
Slew rate	SR	OV _{DD} (1.8 V)	_	25	mV/μs	
		AV _{DD} (2.9 V)	_	25	mV/μs	
SUNN		OVDD (1.8 V) AVDD (2.9 V)	MERC	、		

Power-off sequence

Turn Off the power supplies so that the power supplies fall in order of 2.9 V power supply (AVDD) \rightarrow 1.8 V power supply (OVDD) \rightarrow 1.1 V power supply (DVDD). In addition, all power supplies should be falling within 200 ms. Set each digital input pin (INCK, SDA, SCL, XCLR, XVS, XHS) to 0 V before the 1.8 V power supply (OVDD) falls.

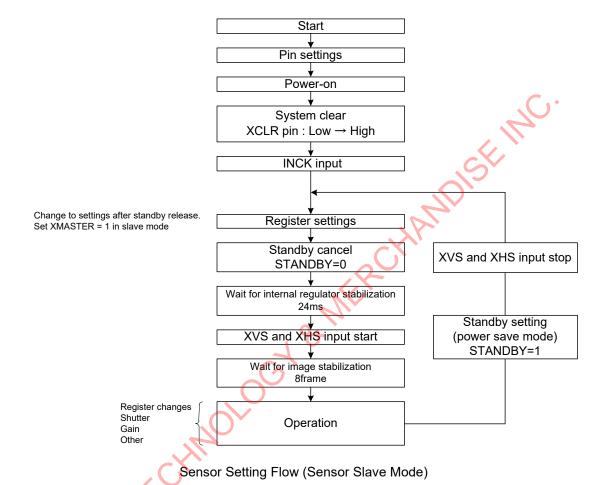
Power-off Sequence

Item	Symbol	Min.	Max.	Unit
2.9 V power shut down → 1.8 V power shut down	T5	0	_	ns
1.8 V power shut down → 1.1 V power shut down	Т6	0	_	ns
Shut down time of all power supply	T7	_	200	ms
SUMMICT				

SONY

IMX415-AAQR-C

Sensor Setting Flow


Setting Flow in Sensor Slave Mode

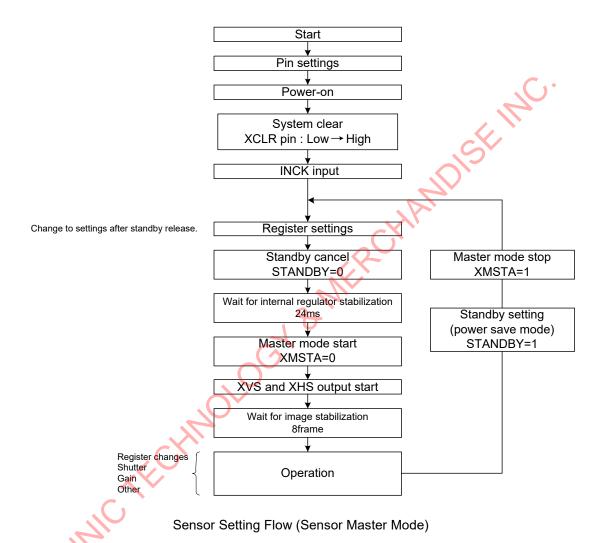
The figure below shows operating flow in sensor slave mode.

For details of "Power-on" to "Reset cancel", see the item of "Power-on sequence" in this section.

For details of "Standby cancel" until "Wait for image stabilization", see the item of "Standby mode".

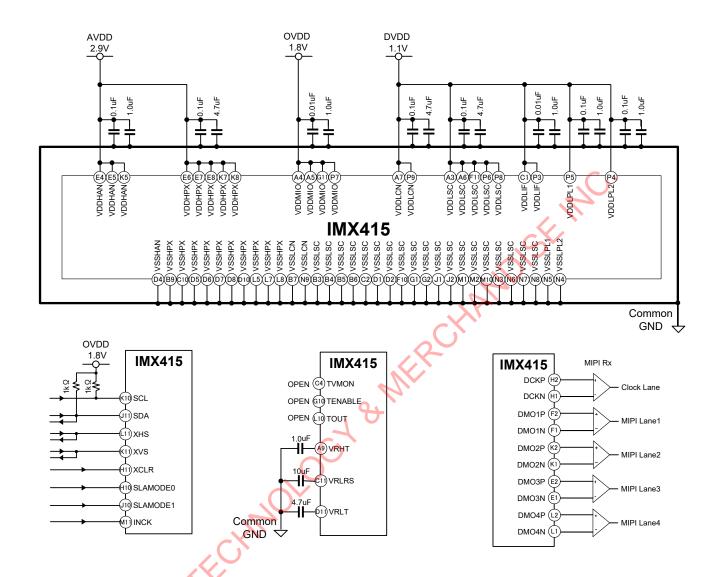
"Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation".

Setting Flow in Sensor Master Mode


The figure below shows operating flow in sensor master mode.

For details of "Power-on" to "Reset cancel", see the item of "Power on sequence" in this section.

For details of "Standby cancel" until "Wait for image stabilization", see the item of "Standby mode".


In master mode, "Master mode start" by setting register XMSTA to "0" after "Waiting for internal regulator stabilization"

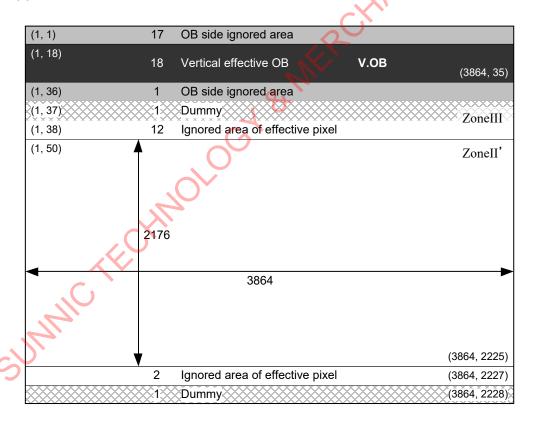
"Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation". This time set "master mode stop" by setting XMSTA to "1".

88

Peripheral Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony Semiconductor Solutions Corporation cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party and other right due to same.

Spot Pixel Specifications


(AV_{DD} = 2.9 V, OV_{DD} = 1.8 V, DV_{DD} = 1.1 V, Tj = 60 $^{\circ}$ C, 30 frame/s, Gain: 0 dB)

				Maximu	ım distorted	l pixels in	Measurement				
Type of distortion		L	.evel			ווי	Effective OB	III	Ineffective OB	method	Remarks
Black or white pixels at high light	30 %	<u><</u>	D			60	-	lo evaluati riteria appl		1	
White pixels in the dark	5.6 mV	<u><</u>	D			8	00		valuation a applied	2	1/30 s storage
Black pixels at signal saturated			D	<	428 mV	0	-	lo evaluati riteria appl		310	•

Note) 1. Zone is specified based on all-pixel drive mode

- 2. D Spot pixel level
- 3. See the Spot Pixel Pattern Specifications for the specifications in which pixel and black pixel are close.

Zone Definition

Notice on White Pixels Specifications

After delivery inspection of CMOS image sensors, particle radiation such as cosmic rays etc. may distort pixels of CMOS image sensors, and then distorted pixels may cause white point effects in dark signals in picture images. (Such white point effects shall be hereinafter referred to as "White Pixels".)

Unfortunately, it is not possible with current scientific technology for CMOS image sensors to prevent such White Pixels. It is recommended that when you use CMOS image sensors, you should consider taking measures against such White Pixels, such as adoption of automatic compensation systems for White Pixels in dark signals and establishment of quality assurance standards.

Unless the Seller's liability for White Pixels is otherwise set forth in an agreement between you and the Seller, Sony Semiconductor Solutions Corporation or its distributors (hereinafter collectively referred to as the "Seller") will, at the Seller's expense, replace such CMOS image sensors, in the event the CMOS image sensors delivered by the Seller are found to be to the Seller's satisfaction, to have over the allowable range of White Pixels as set forth above under the heading "Spot Pixels Specifications", within the period of three months after the delivery date of such CMOS image sensors from the Seller to you; provided that the Seller disclaims and will not assume any liability after you have incorporated such CMOS image sensors into other products.

Please be aware that Seller disclaims and will not assume any liability for (1) CMOS image sensors fabricated, altered or modified after delivery to you, (2) CMOS image sensors incorporated into other products, (3) CMOS image sensors shipped to a third party in any form whatsoever, or (4) CMOS image sensors delivered to you over three months ago. Except the above mentioned replacement by Seller, neither Sony Semiconductor Solutions Corporation nor its distributors will assume any liability for White Pixels. Please resolve any problem or trouble arising from or in connection with White Pixels at your costs and expenses.

[For Your Reference] The Annual Number of White Pixels Occurrence

The chart below shows the predictable data on the annual number of White Pixels occurrence in a single-story building in Tokyo at an altitude of 0 meters. It is recommended that you should consider taking measures against the annual White Pixels, such as adoption of automatic compensation systems appropriate for each annual number of White Pixels occurrence.

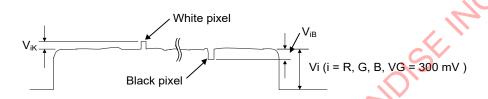
The data in the chart is based on records of past field tests, and signifies estimated number of White Pixels calculated according to structures and electrical properties of each device. Moreover, the data in the chart is for your reference purpose only, and is not to be used as part of any CMOS image sensor specifications.

Example of Annual Number of Occurrence

White Pixel Level (in case of integration time = 1/30 s) (Tj = 60 °C)	Annual number of occurrence
5.6 mV or higher	19 pcs
10.0 mV or higher	10 pcs
24.0 mV or higher	4 pcs
50.0 mV or higher	2 pcs
72.0 mV or higher	1 pcs

- Note 1) The above data indicates the number of White Pixels occurrence when a CMOS image sensor is left for a year.
- Note 2) The annual number of White Pixels occurrence fluctuates depending on the CMOS image sensor storage environment (such as altitude, geomagnetic latitude and building structure), time (solar activity effects) and so on. Moreover, there may be statistic errors. Please take notice and understand that this is an example of test data with experiments that have being conducted over a specific time period and in a specific environment.
- Note 3) This data does not guarantee the upper limits of the number of White Pixels occurrence.

SONY


Measurement Method for Spot Pixels

After setting to standard imaging condition II, and the device driver should be set to meet bias and clock voltage conditions. Configure the drive circuit according to the example and measure.

1. Black or white pixels at high light

After adjusting the luminous intensity so that the average value VG of the Gb / Gr signal outputs is 300 mV, measure the local dip point (black pixel at high light, V_{IB}) and peak point (white pixel at high light, V_{IK}) in the Gr / Gb / R / B signal output Vi (i = Gr / Gb / R / B), and substitute the value into the following formula.

Spot pixel level D = $((V_{iB} \text{ or } V_{iK}) / \text{ Average value of } V_i) \times 100 [\%]$

Signal output waveform of R / G / B channel

2. White pixels in the dark

Set the device to a dark setting and measure the local peak point of the signal output waveform, using the average value of the dark signal output as a reference.

3. Black pixels at signal saturated

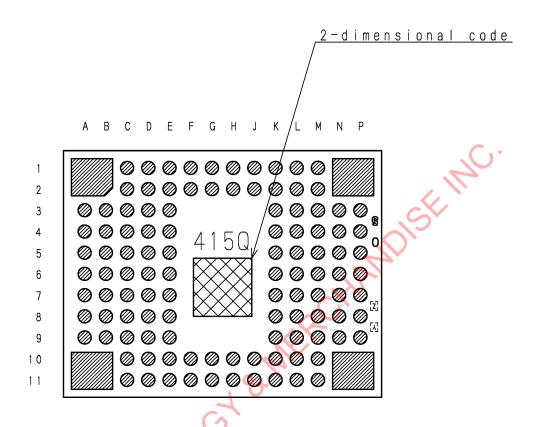
Set the device to operate in saturation and measure the local dip point, using the OB output as a reference.

Signal output waveform of R/G/B channel

Spot Pixel Pattern Specification

White Pixel, Black Pixel and Bright Pixel are judged from the pattern whether they are allowed or rejected, and counted.

List of White Pixel, Black Pixel and Bright Pixel Pattern


No.	Pattern R G G B	White pixel Black pixel Bright pixel
1		Rejected
2		Rejected

- Note) 1."●" shows the position of white pixel, black pixel and bright pixel.

 White pixel, black pixel and bright pixel are specified separately according the pattern.

 (Example: If a black pixel and a white pixel is in the pattern No.1 respectively, they are not judged to be rejected.)
 - 2. When one or more spot pixels indicated "Rejected" is selected and removed.
- 3. Spot pixels other than described in the table above are all counted including the number of allowable spot pixels by zone.

Marking

Y: In English upper case character, One character Z: Number, single number

DRAWING No. AM-C415AAQR(2D)

Notes On Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

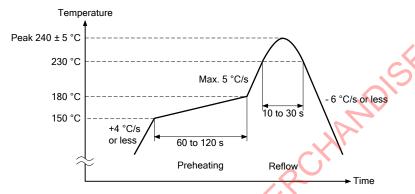
- (1) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

Image sensors are packed and delivered with care taken to protect the element glass surfaces from harmful dust and dirt. Clean glass surfaces with the following operations as required before use.

- (1) Perform all lens assembly and other work in a clean environment (class 1000 or less).
- (2) Do not touch the glass surface with hand and make any object contact with it. If dust or other is stuck to a glass surface, blow it off with an air blower. (For dust stuck through static electricity, ionized air is recommended.)
- (3) Clean with a cotton swab with ethyl alcohol if grease stained. Be careful not to scratch the glass.
- (4) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- (5) When a protective tape is applied before shipping, remove the tape applied for electrostatic protection just before use. Do not reuse the tape.

3. Installing (attaching)


- (1) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
- (2) The adhesive may cause the marking on the rear surface to disappear.
- (3) If metal, etc., clash or rub against the package surface, the package may chip or fragment and generate dust.
- (4) Acrylate anaerobic adhesives are generally used to attach this product. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives to hold the product in place until the adhesive completely hardens. (Reference)
- (5) Note that the sensor may be damaged when using ultraviolet ray and infrared laser for mounting it.

4. Recommended reflow soldering conditions

The following items should be observed for reflow soldering.

(1) Temperature profile for reflow soldering

Control item	Profile (at part side surface)
1. Preheating	150 to 180 °C 60 to 120 s
2. Temperature up (down)	+4 °C/s or less (- 6 °C/s or less)
3. Reflow temperature	Over 230 °C 10 to 30 s Max. 5 °C/s
4. Peak temperature	Max. 240 ± 5 °C

(2) Reflow conditions

- (a) Make sure the temperature of the upper surface of the seal glass resin adhesive portion of the package does not exceed 245 °C.
- (b) Perform the reflow soldering only one time.
- (c) Finish reflow soldering within 72 h after unsealing the degassed packing.

 Store the products under the condition of temperature of 30 °C or less and humidity of 70 % RH or less after unsealing the package.
- (d) Perform re-baking only one time under the condition at 125 °C for 24 h.
- (e) Note that condensation on glass or discoloration on resin interfaces may occur if the actual temperature and time exceed the conditions mentioned above.

(3) Others

- (a) Carry out evaluation for the solder joint reliability in your company.
- (b) After the reflow, the paste residue of protective tape may remain around the seal glass. (The paste residue of protective tape should be ignored except remarkable one.)
- (c) Note that X-ray inspection may damage characteristics of the sensor.

5. Others

- (1) Do not expose to strong light (sun rays) for long periods, as the color filters of color devices will be discolored.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to apply excessive mechanical shocks or force.
- (4) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.
- (5) Note that image may be affected by the light leaked to optical black when using an infrared cut filter that has transparency in near infrared ray area during shooting subjects with high luminance.
- (6) Please perform the tilt adjustment for the optical axis in your company as required.

Package Outline

(Unit: mm)

List of Trademark Logos and Definition Statements

STARVIS

* STARVIS is a trademark of Sony Corporation. The STARVIS is back-illuminated pixel technology used in CMOS image sensors for surveillance camera applications. It features a sensitivity of 2000 mV or more per 1 μm² (color product, when imaging with a 706 cd/m² light source, F5.6 in 1 s accumulation equivalent), and realizes high picture quality in the visible-light and near infrared light regions.

SUMMIC TECHNOLOGY & MERCHANDISE INC.

Revision History

Date of change	Ver.	Page	Contain of Change
2018 / 08 / 09	0.1	_	First Edition
2018 / 11 / 20	0.2	2	Added: Image size, Diagonal
		8	Correction: Fig. Pixel Arrangement
		10	Correction: Fig. Pin Configuration; Pin name: A7, P9, B7, N9, N5 Pin color: A4, A5, G11, P7, A9
		12	Correction: Pin No. K2; Analog/Digital "—" to D
		13	Correction: Pin No. P7 Description; 1.1V to 1.8V
		14	Deleted: pins SDA, SCL
		27	Correction: Immediately -> "I", Reconsideration of sentences
		28	Correction: SDL -> SCL
		34	Correction: CPWAIT_TIME; Default Value 0h -> 0B6h WINMODE; Horizontal/Vertical 2/2-line binning setting 1 -> 0
		35, 37, 44	Correction: Reflection timing V -> S HADD, VADD, ADDMODE, ADBIT, MDBIT, ADBIT1
		41, 55, 57	Add: Register DIG_CLP_VSTART, DIG_CLP_VNUM
		42	Correction: Reflection timing V -> I BLKLEVEL
		44, 45	Added: Register address 358Ah, 35A1h, 36BCh, 36CCh-36CEh, 36D0h-36D2h, 36D4h, 36D6h-36D8h, 36DAh, 36DBh, 3724h, 3726h, 3734h, 3736h, 38CCh, 38CDh, 395Ch, 3A4Ch, 3AE0h, 3B00h, 3B06h Deleted: Register address 35A0h
		47	Correction: All pixel 4Lane 720Mbps/lane 12bit; 30.01fps -> 25fps
		49, 54, 59, 60	Correction: Fig. Image Drawing; "FE" position
SU		53	Correction: [1485Mbps/lane]; TCLKPOST: 0007h -> 00A7h, TCLKTRAIL: 00h5F -> 005Fh [2376Mbps/lane]; 60fps -> 90fps, 7.5us -> 5.0us, HMAX: 226h -> 16Eh, ADBIT/MDBIT: 1h -> 0h, TCLKPOST: 009Fh -> 00E7h, TCLKPREPARE: 0057h -> 008Fh, TCLKTRAIL: 0057h -> 008Fh, TCLKZERO: 0187h -> 027Fh, THSPREPARE: 005Fh -> 0097h, THSZERO: 00A7h -> 010Fh, THSTRAIL: 005Fh -> 0097h, THSEXIT: 0097h -> 00F7h, TLPX: 004F -> 007Fh
		54, 59	Correction: Fig. Drive Timing Chart for All pixel mode, Pixel Array Image Drawing in Horizontal /Vertical 2/2-line binning mode
		65	Correction: 3091h [1] -> [0]
		76 - 78	Correction: bit length SYS_MODE, INCKSEL4, INCKSEL5
		87	Correction: Peripheral Circuit; Pin D11(VRLT) Capacitor value 10uF -> 4.7uF

Date of change	Ver.	Page	Contain of Change
2019 / 02 / 18	0.3	1	Correction: Description, 8.42 M effective pixels -> 8.46 M
		1	Update: Readout rate, CDS/PGA function TBD
		15	Update: Current Consumption
		24	Correction: Color Coding Diagram; added scan direction
		27	Correction: Register Communication Timing, description
		37	Update: SYS_MODE 2376Mbps TBD
		39	Correction: PIX_VWIDTH Description
		40, 66	Update: GAIN_PGC_0 TBD
		43 - 46	Added: Register address 3081h, 32D4h, 32ECh, 3452h, 3453h, 3732h, 3742h, 3862h, 3A42h, 3B98h, 3B99h, 3B9Bh, 3B9Ch, 3B9Dh, 3B9Eh, 3BA1h - 3BA9h, 3BACh - 3BB8h, 3BBAh, 3BBCh, 3BBEh, 3BC0h, 3BC2h, 3BC4h, 3BC8h, 3BCAh
		48	Update: Data rate 2376Mbps/Lane TBD
		50	Correction: MDBIT address
		55	Correction: Fig. Pixel Array Image Drawing in All pixel mode; added read out direction, Fig. Drive Timing Chart; inverted operation
		60	Correction: Fig. Drive Timing Chart for Horizontal /Vertical 2/2-line binning mode; added read out direction, Fig. Drive Timing Chart; 1 XHS/Line -> 2 XHS/Line, inverted operation
		62	Correction: Restriction on Window cropping mode, added V _{TTL}
		63, 86, 87	Update: After standby mode, Time TBD
		66	Correction: Fig. GAIN Reflection Timing, GAIN -> GAIN_PCG_0
		69	Correction: Formula Integration time, added T _{offset}
		71	Update: the maximum of long time exposure TBD
	,	75	Correction: Fig. Relationship between Pin Name and MIPI Output Lane, DCKM -> DCKN
		80	Correction: Resister Hold Setting
		83	Update: Tsync TBD
	110	95	Update: Notes On Handling; added 5. (6)

Date of change	Ver.	Page	Contain of Change
2019 / 03 / 28	0.4	1	Correction: Maximum frame rate, 12bit 60 frame/s -> 60.3, 10bit 90 -> 90.9
		1	Update: List analog and digital gain respectively
		15	Update: Current Consumption
		19 20	Correction: Standard mode, Fast mode -> Standard-mode, Fast-mode ; Fast mode + -> Fast-mode Plus
		22	Update: Spectral Sensitivity Characteristics (TBD)
		23	Update: Image Sensor Characteristics from TBD
		25	Update: Measurement Method 2. 3. 4. from TBD
		25	Correction: Measurement Method 3. measure the average values -> measure the minimum values
		39	Correction: register 3081h Set to "02h" -> Fixed to "00h"
		48, 49	Update: updated to expression of maximum frame rate
		53	Added: frame rate formula
		54, 55, 57, 59	Added: 3500h to 3BFFh -> 3200h to 3BFFh
		63	Correction: 1H period description at Window cropping mode
		73	Correction: Integration time, added Toffset
		77	Correction: Output Signal Range Deleted "but output is not performed over the full range,"
		78	Added: the initial deskew burst
		90	Update: Spot Pixel Specifications from TBD
		91	Update: Example of Annual Number of Occurrence from TBD
		92	Correction: Measurement Method for Spot Pixels Incorrect form corrected
		10	Update: Measurement Method for Spot Pixels from TBD mV
2019 / 05 / 21	E19504	77	First Edition (Official Edition)
		7	Update: Optical Center tolerance from TBD
	XX	22	Update: Spectral Sensitivity Characteristics from TBD
		24	Correction: Measurement Condition 2. Sentence reconsidered
	MICLE	27	Correction: Description and figure of "communication prohibited period"
1	7,	62	Correction: Description and figure of inverted mode
	*	63	Correction: 1farame -> 1frame
		64	Correction: a normal image is output from the 8 frames -> 9 frames
		67	Added: Gain graph
		94	Update: Marking from TBD
		97	Update: Package Outline from TBD