

DFS Test Report

Report No.: REBBUI-WTW-P21040655-5

Test Model: RTL8852BE

Received Date: Apr. 20, 2021

Test Date: May 15, 2021

Issued Date: Aug. 05, 2021

Applicant: Realtek Semiconductor Corp.

Address: No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

laiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: REBBUI-WTW-P21040655-5 Page No. 1 / 17 Report Format Version: 6.2.0

Table of Contents 1 Certificate of Conformity4 2 Test Limits and Radar Signal Parameters......6 2.1 2.2 2.3 Test Instruments _______10 2.4 2.5 Deviation from Test Standard......11 2.6 2.7 2.8 2.9 3

Release Control Record

Issue No.	Description	Date Issued
REBBUI-WTW-P21040655-5	Original release.	Aug. 05, 2021

1 Certificate of Conformity

Product: 11ax RTL8852BE Combo module

Brand: REALTEK

Test Model: RTL8852BE

Sample Status: Engineering sample

Applicant: Realtek Semiconductor Corp.

Test Date: May 15, 2021

Standards: EN 301 893 V2.1.1 (2017-05)

Test Item: Dynamic Frequency Selection

(Clause 4.2.6)

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: March 1997 Aug. 05, 2021

Phoenix Huang / Specialist

Approved by : _______, Date: ______ Aug. 05, 2021

Clark Lin / Technical Manager

2 Dynamic Frequency Selection

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Slave. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See below table for the applicability of DFS requirements for each of the operational modes.

Applicability of DFS requirements

	Operational Mode				
Requirement	Master	Slave (without radar detection)	Slave (with radar detection)		
Channel Availability Check	✓	Not required	√ (see note 2)		
Off-Channel CAC (see note 1)	✓	Not required	√ (see note 2)		
In-Service Monitoring	✓	Not required	✓		
Channel Shutdown	✓	✓	✓		
Non-Occupancy Period	✓	Not required	✓		
Uniform Spreading	✓	Not required	Not required		

NOTE 1: Where implemented by the manufacturer.

NOTE 2: A slave with radar detection is not required to perform a CAC or Off-Channel CAC at initial use of the channel but only after the slave has detected a radar signal on the Operating Channel by In-Service Monitoring and the Non-Occupancy Period resulting from this detection has elapsed.

The radar detection requirements specified in EN 301 893 clauses 4.2.6.2.2 to 4.2.6.2.4 assume that the centre frequencies of the radar signals fall within the central 80 % of the Occupied Channel Bandwidth of the RLAN channel.

2.1 Test Limits and Radar Signal Parameters

DFS requirement values

Parameter	Value	
Channel Availability Check Time	60 s (see note 1)	
Minimum Off-Channel CAC Time	6 minutes (see note 2)	
Maximum Off-Channel CAC Time	4 hours (see note 2)	
Channel Move Time	10 s	
Channel Closing Transmission Time	1 s	
Non-Occupancy Period	30 minutes	

NOTE 1: For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the Channel Availability Check Time shall be 10 minutes.

Interference threshold values

EIRP Spectral Density	Value
dBm/MHz	(see notes 1 and 2)
10	-62 dBm

NOTE 1: This is the level at the input of the receiver of a RLAN device with a maximum EIRP density of 10 dBm/MHz and assuming a 0 dBi receive antenna. For devices employing different EIRP spectral density and/or a different receive antenna gain G (dBi) the DFS threshold level at the receiver input follows the following relationship:

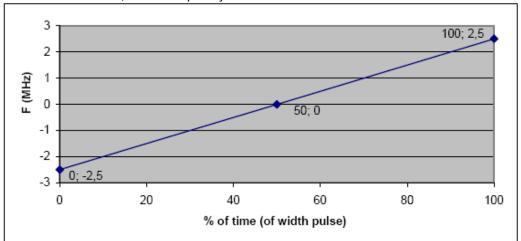
DFS Detection Threshold (dBm) = -62 + 10 - EIRP Spectral Density (dBm/MHz) + G (dBi), however the DFS threshold level shall not be lower than -64 dBm assuming a 0 dBi receive antenna gain.

NOTE 2: Slave devices with a maximum e.i.r.p. of less than 23 dBm do not have to implement radar detection unless these devices are used in fixed outdoor point to point or fixed outdoor point to multipoint applications.

Parameters of the reference DFS test signal

Pulse width	Pulse repetition	Pulses per burst
W [µs]	frequency PRF [pps]	[PPB]
1	700	18

NOTE 2: For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the Maximum Off-Channel CAC Time shall be within the range 1 to 24 hours.



Parameters of radar test signals

Radar Test Signal #		width [µs]	Pulse Repetition Frequency (pps)		Number of different	Pulses per Burst for each PRF(PPB)	
(see notes 1 to 3)	Min	Max	Min	Max	PRFs	(see notes 5)	
1	0.5	5	200	1000	1	10 (see note 6)	
2	0.5	15	200	1600	1	15 (see note 6)	
3	0.5	15	2300	4000	1	25	
4	20	30	2000	4000	1	20	
5	0.5	2	300	400	2/3	10 (see note 6)	
6	0.5	2	400	1200	2/3	15 (see note 6)	

NOTE 1: Radar test signals 1 to 4 are constant PRF based signals. See figure D.1. These radar test signals are intended to simulate also radars using a packet based Staggered PRF. See figure D.2.

NOTE 2: Radar test signal 4 is a modulated radar test signal. The modulation to be used is a chirp modulation with a ±2,5 MHz frequency deviation which is described below.

NOTE 3: Radar test signals 5 and 6 are single pulse based Staggered PRF radar test signals using 2 or 3 different PRF values. For radar test signal 5, the difference between the PRF values chosen shall be between 20 pps and 50 pps. For radar test signal 6, the difference between the PRF values chosen shall be between 80 pps and 400 pps. See figure D.3

NOTE 4: Apart for the Off-Channel CAC testing, the radar test signals above shall only contain a single burst of pulses. See figures D.1, D.3 and D.4. For the Off-Channel CAC testing, repetitive bursts shall be used for the total duration of the test. See figures D.2 and D.5. See also clause 4.2.6.2.3., 5.4.8.2.1.4.2 and 5.4.8.2.1.4.3.

NOTE 5: The total number of pulses in a burst is equal to the number of pulses for a single PRF multiplied by the number of different PRFs used.

NOTE 6: For the CAC and Off-Channel CAC requirements, the minimum number of pulses (for each PRF) for any of the radar test signals to be detected in the band 5 600 MHz to 5 650 MHz shall be 18.

Detection probability

	Detection Probability (Pd)			
Parameter	Channels whose nominal bandwidth falls partly or completely within the 5600 MHz to 5650 MHz band			
CAC, Off-Channel CAC	99,99 %	60 %		
In-Service Monitoring	60 %	60 %		

NOTE: Pd gives the probability of detection per simulated radar burst and represents a minimum level of detection performance under defined conditions. Therefore Pd does not represent the overall detection probability for any particular radar under real life conditions.

2.2 EUT Information

Operating Frequency Bands and Mode of EUT

Operational Mode	Operating Frequency Range		
Operational Mode	5250~5350MHz	5470~5725MHz	
Slave without Radar Detection	✓	✓	

EUT Software and Firmware Version

No.	Product	Model No.	Software/Firmware Version
1	11ax RTL8852BE Combo module	RTL8852BE	6001.0.13.101

Description of Available Antennas to the EUT

Ant. Set	RF Chain No.	Brand	Model	Ant. Net Gain (dBi)	Frequency Range (GHz)	Ant. Type	Connector Type	Cable Length (mm)
		3.9	3.5	2.4~2.4835				
	Chain 0	ARISTOTLE	RFA-27-JP326- MHF4300	5	5.15~5.85	PIFA	i-pex(MHF)	300
1			WII II 4300	5	5.875~7.125			
'		ARISTOTLE	RFA-27-JP326- MHF4300	3.5	2.4~2.4835			
	Chain 1 ARISTOTLE			5	5.15~5.85	PIFA	i-pex(MHF)	300
		101111 4300	5	5.875~7.125				
		Chain 0 ARISTOTLE RFA-27-C38H1-MHF4300	DEA 07 00014	3	2.4~2.4835			
	Chain 0		5	5.15~5.85	Dipole	i-pex(MHF)	300	
_			WII 1F4300	5	5.875~7.125			
2		Chain 1 LARISTOTTET		3	2.4~2.4835			
	Chain 1		RFA-27-C38H1- MHF4300	5	5.15~5.85	Dipole	i-pex(MHF)	300
			WII II 4300	5	5.875~7.125			

^{*} The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

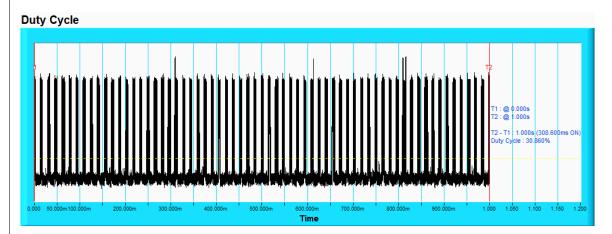
2.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	ESR7	102026	Apr. 16, 2021	Apr. 15, 2022
Vector Signal Generator Agilent	N5182B	MY53052700	July 14, 2020	July 13, 2021
DFS Control Box	BV-DFS-CB	002	Dec. 01, 2020	Nov. 30, 2021

Note: 1. The test was performed in DFS-2 room.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: May 15, 2021

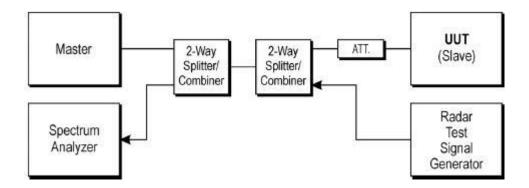
2.4 Description of Support Units


No	. Product	Brand	Model No.	Software/Firmware Version	Spec.
1	Wireless-AX6000 Dual Band Gigabit Router	ASUS	RT-AX88U	3.0.0.4.386	Maximum EIRP Spectral Density is 16.96dBm/MHz Antenna gain is 2.24dBi.

NOTE: This device was functioned as a Master Slave device during the DFS test.

2.5 Test Procedure

The measured channel is 5300MHz, 5500MHz in 20MHz Bandwidth and 5290MHz, 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) with –60.18dBm power level, measured the channel shutdown. The slave transmitted the test data to master, the transmitted duty cycle is 30.86%.


NOTE: T1 denotes the start of duty cycle period is 0^{th} second. T2 denotes the end of duty cycle period is 1^{th} second. T2 – T1= 1 seconds. Duty Cycle = 30.86%

Note: Traffic signal: from slave transmit to master.

2.6 Deviation from Test Standard

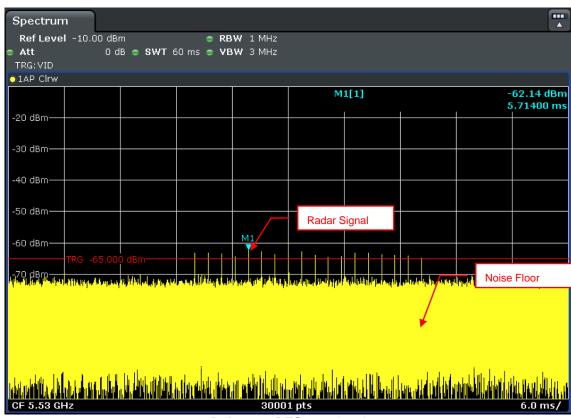
No deviation.

2.7 Test Setup Configuration

The UUT is a RLAN device operating in slave mode, without Radar Interference Detection function. The radar test signals are injected into the master device.

2.8 List of Measurements

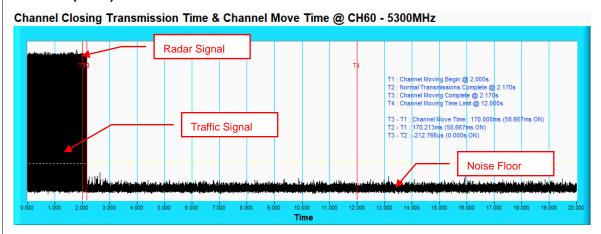
Clause	Test Parameter	Remarks	Pass/Fail
4.2.6.2.2	Channel Availability Check Time	Not Applicable	NA
4.2.6.2.3	Off-Channel CAC	Not Applicable	NA
4.2.6.2.4	In-Service Monitoring	Not Applicable	NA
4.2.6.2.5	Channel Shutdown	Applicable	Pass
4.2.6.2.6	Non- Occupancy Period	Not Applicable	NA
4.2.6.2.7	Uniform Spreading	Not Applicable	NA


Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

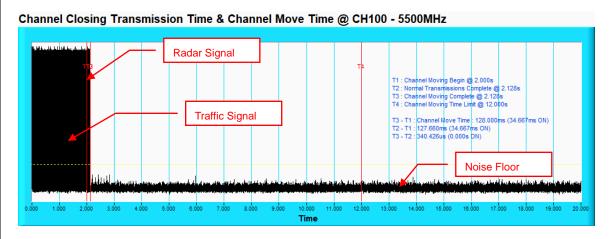
2.9 Test Result

2.9.1 Interference Threshold Values Injected into Master

The Master Maximum EIRP Spectral Density is 16.96dBm/MHz and antenna gain is 2.24dBi DFS Detection Threshold = -62 + 10 - EIRP Spectral Density (16.96dBm/MHz) + G (0dBi) = -68.96dBm. For an interference threshold level of -64dBm and the Master antenna gain is 2.24dBi. Then the radar Burst signal level to the Master connector is -61.76dBm.

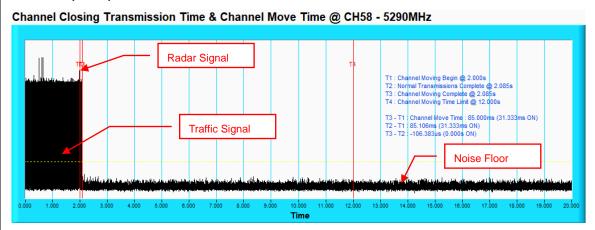


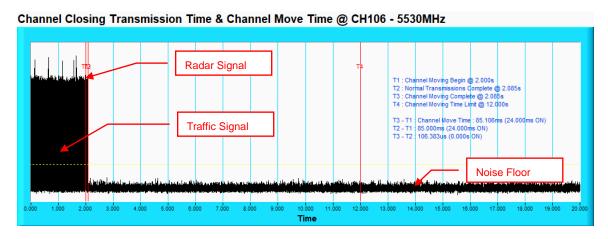
Reference DFS test signal



2.9.2 Channel Shutdown

802.11ax (HE20) mode


NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission complete time. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.


NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission complete time. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

802.11ax (HE80) mode

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission complete time. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission complete time. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

3 Photographs of the Test Configuration

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---