

TEST REPORT

Report No.:	BCTC2211166199-2E
Applicant:	OKdo Technology Limited
Product Name:	Radxa CM3
Model/Type Ref.:	Radxa CM3
Tested Date:	2022-11-09 to 2022-12-14
Issued Date:	2022-12-15

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005

Page 1 of 48

IC: 29530-RADXACM3

Product Name:	Radxa CM3		
Trademark:	N/A		
Model/Type Ref.:	Radxa CM3		
Prepared For:	OKdo Technology Limited		
Address:	5th Floor, 2 Pancras Square, King's Cross, London N1C 4AG, United Kingdom		
Manufacturer:	OKdo Technology Limited		
Address:	5th Floor, 2 Pancras Square, King's Cross, London N1C 4AG, United Kingdom		
Prepared By:	Shenzhen BCTC Testing Co., Ltd.		
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China		
Sample Received Date:	2022-11-09		
Sample tested Date:	2022-11-09 to 2022-12-14		
Issue Date:	2022-12-15		
Report No.:	BCTC2211166199-2E		
Test Standards:	RSS-247 Issue 2: February 2017 RSS-Gen Issue 5: Amendment 2 (February 2021)		
Test Results:	PASS		
Remark:	This is Bluetooth BLE radio test report.		

Tested by:

Chen

Lei Chen/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	9
4.5	Test Mode	9
4.6	Table Of Parameters Of Text Software Setting	9
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	10
6.	Conducted Emissions	12
6.1	Block Diagram Of Test Setup	12
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	
6.5	Test Result	
7.	Radiated Emissions	15
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test Procedure	
7.4	EUT Operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Oper	
8.1	Block Diagram Of Test Setup.	
8.2	Limit	
8.3	Test Procedure	
8.4	EUT Operating Conditions	23
8.5	Test Result	21
9.	Power Spectral Density Test	
9.1	Block Diagram Of Test Setup.	25
9.2	Limit	25
9.3	Power Spectral Density Test Block Diagram Of Test Setup. Limit	
9.4	EUT Operating Conditions Test Result	25
9.5	Test Result	26
10.	Bandwidth Test Block Diagram Of Test Setup	
10.1	Block Diagram Of Test Setup	28
10.2	Limit	28
10.3	Test Procedure	
10.4	EUT Operating Conditions	
10.5	Test Result	29
11.	Peak Output Power Test	
BCTC/F	RF-EMC-005 Page 3 of 48 // Edition: A	.5
, -	Peak Output Power Test RF-EMC-005 Page 3 of 48	.5

,TC 3C PR

濒

11.1 Block Diagram Of Test Setup	
11.2 Limit	
11.3 Test Procedure	33
11.4 EUT Operating Conditions	
11.5 Test Result	34
12. 100 KHz Bandwidth Of Frequency Band Edge	35
12.1 Block Diagram Of Test Setup	35
12.2 Limit	35
12.3 Test Procedure	35
12.4 EUT Operating Conditions	35
12.5 Test Result	36
13. Duty Cycle Of Test Signal	41
13.1 Standard Requirement	
13.2 Formula:	41
13.3 Measurement Procedure:	41
13.4 Test Result	41
14. Antenna Requirement	44
14.1 Limit	44
14.2 Test Result	44
15. EUT Photographs	45
16. EUT Test Setup Photographs	46

(Note: N/A Means Not Applicable)

TE.

T(

OVI

检

1. Version

Report No.	Issue Date	Description	Approved
BCTC2211166199-2E	2022-12-15	Original	Valid

2. Test Summary

Test procedures according to the technical standards:

RSS-247 Issue 2: February 2017					
Standard Section	Test Item	Judgment	Remark		
RSS-GEN 8.8 RSS-247 3.1	Conducted Emission	PASS			
RSS-247 5.2 (a) RSS-GEN 6.6	6dB Bandwidth	PASS			
RSS-Gen.6.7	99% Bandwidth	PASS			
RSS-247 5.4 (b)	Peak Output Power	PASS			
RSS-247 5.5	Radiated Spurious Emission	PASS			
RSS-247 5.2 (b)	Power Spectral Density	PASS			
RSS-247 5.5	Restricted Band of Operation	PASS			
RSS-Gen.6.7	Band Edge (Out of Band Emissions)	PASS			
RSS-GEN 6.8 RSS-247 3.1	Antenna Requirement	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

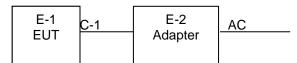
No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59 ℃

ENZ

4. Product Information And Test Setup


4.1 Product Information

Model/Type Ref.:	Radxa CM3
Model Differences:	N/A
Bluetooth Version:	BT5.0
Hardware Version:	V1.3
Software Version:	4.19
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK
Number Of Channel	40CH
Antenna installation:	FPC antenna
Antenna Gain:	-7.23dBi
Ratings:	DC 12V


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Radxa CM3	N/A	Radxa CM3	N/A	E⊍T
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442
02	2404	12	2424	22	2444
03	2406	13	2426	23	2446
~	4	~	~	~	4
09	2418	19	2438	39	2478
10	2420	20	2440	40	2480

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH01		
Mode 2	CH20	GFSK	
Mode 3	CH40		
Mode 4	Transmitting (conducted emission & Radiated emission)		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		CMD	<u> </u>
Frequency	2402 MHz	2440 MHz	2480 MHz
Parameters	DEF	DEF	DEF

ТC

冽

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

5.2 Test Instrument Used

Conducted Emissions Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023	
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023	
Software	Frad	EZ-EMC	EMC-CON 3A1	١	١	
Attenuator	\	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023	

RF Conducted Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Metter	Keysight	E4419	/	May 24, 2022	May 23, 2023
Power Sensor (AV)	Keysight	E9300A	1	May 24, 2022	May 23, 2023
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023
Radio frequency control box	MAIWEI	MW100-RFCB	······	7	\
Software	MAIWEI	MTS 8310	/		

No.: BCTC/RF-EMC-005

Radiated Emissions Test (966 Chamber02)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	SKET	966 Room	966	Nov. 02. 2021	Nov. 01.2024
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023
Receiver	R&S	ESRI7	100010	Nov. 08. 2022	Nov. 07.2023
Amplifier	SKET	LNPA-30M01 G-30	SK202108200 4	Nov. 08. 2022	Nov. 07.2023
TRILOG Broadband Antenna	Schwarzbeck	VULB9168	1323	Mar. 06, 2022	Mar. 05, 2024
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 26, 2022	May 25, 2023
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 26, 2022	May 25, 2023
Horn Antenn(18GHz -40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 24, 2022	May 23, 2023
Software	Frad	EZ-EMC	FA-03A2 RE		\ \

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (d	dBuV)
FREQUENCY (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

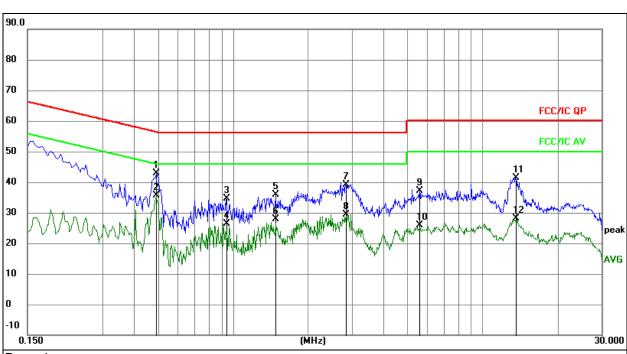
6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

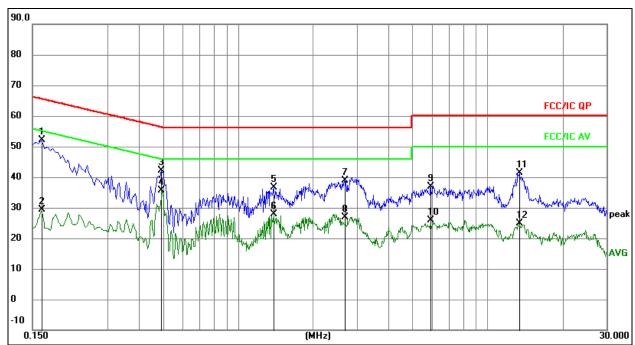
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.4915	23.04	19.72	42.76	56.14	-13.38	QP
2 *	0.4915	16.01	19.72	35.73	46.14	-10.41	AVG
3	0.9381	14.78	19.76	34.54	56.00	-21.46	QP
4	0.9381	6.52	19.76	26.28	46.00	-19.72	AVG
5	1.4796	16.07	19.82	35.89	56.00	-20.11	QP
6	1.4796	8.02	19.82	27.84	46.00	-18.16	AVG
7	2.8240	19.20	19.97	39.17	56.00	-16.83	QP
8	2.8240	9.46	19.97	29.43	46.00	-16.57	AVG
9	5.5936	16.99	20.14	37.13	60.00	-22.87	QP
10	5.5936	5.71	20.14	25.85	50.00	-24.15	AVG
11	13.5509	21.00	20.28	41.28	60.00	-18.72	QP
12	13.5509	7.77	20.28	28.05	50.00	-21.95	AVG


No.: BCTC/RF-EMC-005

Edition: A.5

E NZ

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

Remark:

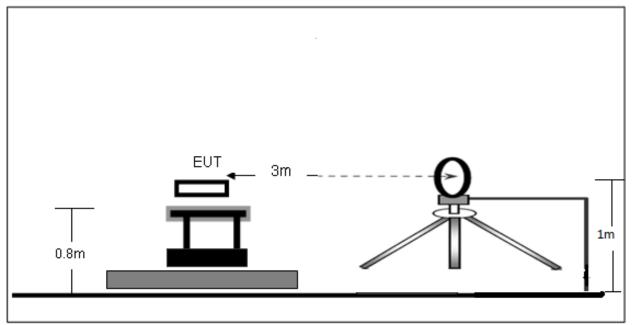
1. All readings are Quasi-Peak and Average values.

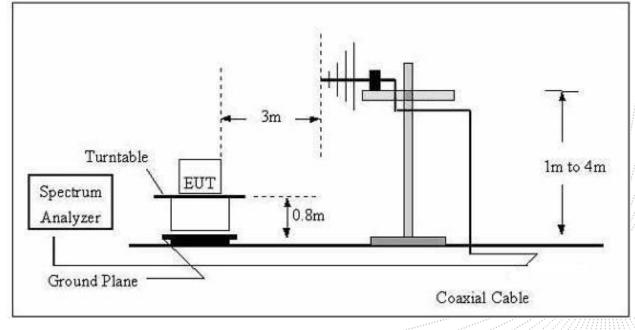
2. Factor = Insertion Loss + Cable Loss.

3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit

			Deeding	Correct	Magazina			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1635	32.42	19.71	52.13	65.28	-13.15	QP
2		0.1635	9.67	19.71	29.38	55.28	-25.90	AVG
3		0.4920	22.48	19.72	42.20	56.13	-13.93	QP
4	*	0.4920	15.81	19.72	35.53	46.13	-10.60	AVG
5		1.3920	16.94	19.81	36.75	56.00	-19.25	QP
6		1.3920	8.10	19.81	27.91	46.00	-18.09	AVG
7		2.6700	18.99	19.95	38.94	56.00	-17.06	QP
8		2.6700	6.94	19.95	26.89	46.00	-19.11	AVG
9		5.9145	16.62	20.15	36.77	60.00	-23.23	QP
10		5.9145	5.75	20.15	25.90	50.00	-24.10	AVG
11		13.4340	21.05	20.28	41.33	60.00	-18.67	QP
12		13.4340	4.65	20.28	24.93	50.00	-25.07	AVG

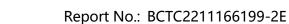

No.: BCTC/RF-EMC-005


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

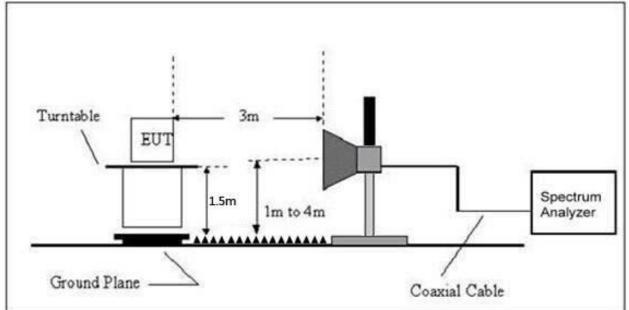
(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



,TC

3C


[>]PR

测

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

In case the emission fall within the restricted band specified on RSS-GEN, then the RSS-247 limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance				
(MHz)	uV/m	(m)	uV/m dBuV/m				
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.3 Test Procedure

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

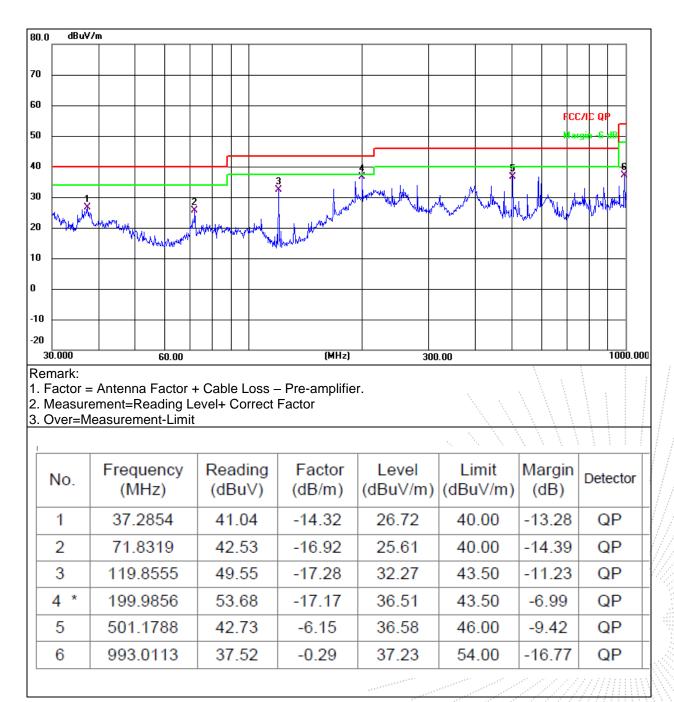
7.5 Test Result

Temperature:	26 ℃	Relative Humidity:	24%
Pressure:	101 kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 4	Polarization :	$ \times$ \times \times \times \times \times \times \times

Delaw 20MU-

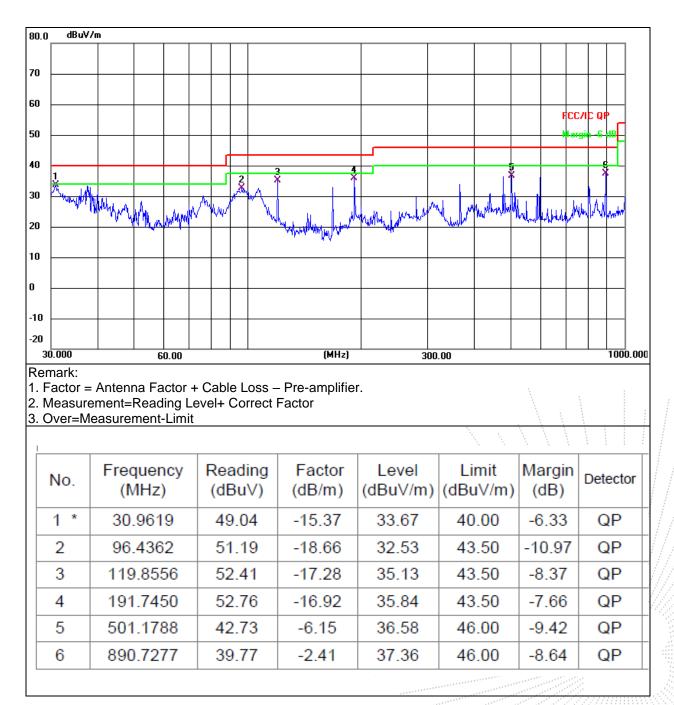
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
		<u></u>	· · · · · · · · · · · · · · · · · · ·	PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

ENZ/

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage :	AC 120V/60Hz

No.: BCTC/RF-EMC-005

Edition: A.5

E

A

Г

Report No.: BCTC2211166199-2E

Between	1GHz -	25GHz
---------	--------	-------

			GFSK				
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chanr	nel			
V	4804.00	52.88	-0.43	52.45	74.00	-21.55	PK
V	4804.00	42.18	-0.43	41.75	54.00	-12.25	AV
V	7206.00	42.94	8.31	51.25	74.00	-22.75	PK
V	7206.00	32.16	8.31	40.47	54.00	-13.53	AV
Н	4804.00	48.34	-0.43	47.91	74.00	-26.09	PK
Н	4804.00	39.03	-0.43	38.60	54.00	-15.40	AV
Н	7206.00	40.75	8.31	49.06	74.00	-24.94	PK
Н	7206.00	32.40	8.31	40.71	54.00	-13.29	AV
			Middle char	nnel			
V	4880.00	50.05	-0.38	49.67	74.00	-24.33	PK
V	4880.00	42.22	-0.38	41.84	54.00	-12.16	AV
V	7320.00	39.56	8.83	48.39	74.00	-25.61	PK
V	7320.00	31.06	8.83	39.89	54.00	-14.11	AV
Н	4880.00	47.89	-0.38	47.51	74.00	-26.49	PK
Н	4880.00	38.39	-0.38	38.01	54.00	-15.99	AV
Н	7320.00	37.66	8.83	46.49	74.00	-27.51	PK
Н	7320.00	30.29	8.83	39.12	54.00	-14.88	AV
			High chan	nel			
V	4960.00	52.61	-0.32	52.29	74.00	-21.71	PK
V	4960.00	42.73	-0.32	42.41	54.00	-11.59	AV
V	7440.00	44.72	9.35	54.07	74.00	-19.93	PK
V	7440.00	34.05	9.35	43.40	54.00	-10.60	AV
Н	4960.00	50.78	-0.32	50.46	74.00	-23.54	PK
Н	4960.00	41.15	-0.32	40.83	54.00	-13.17	AV
Н	7440.00	42.10	9.35	51.45	74.00	-22.55	PK
Н	7440.00	34.91	9.35	44.26	54.00	-9.74	AV

Remark:

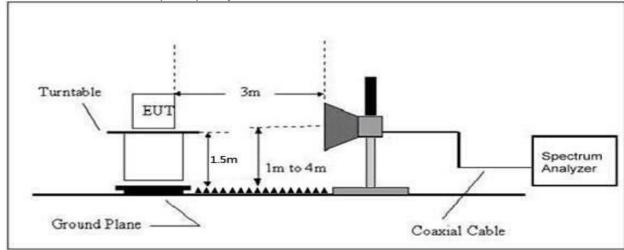
1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible


value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

RSS-GEN, RSS-247

MHz
0.090 - 0.110
0.495 - 0.505
2.1735 - 2.1905
3.020 - 3.026
4.125 - 4.128
4.17725 - 4.17775
4.20725 - 4.20775
5.677 - 5.683
6.215 - 6.218
6.26775 - 6.26825
6.31175 - 6.31225
8.291 - 8.294
8.362 - 8.366
8.37625 - 8.38675
8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41
16.42 - 16.423
16.69475 - 16.69525
16.80425 - 16.80475
25.5 - 25.67
37.5 - 38.25
73 - 74.6
74.8 - 75.2
108 - 138

MHz
149.9 - 150.05
156.52475 - 156.52525
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 1626.5
1645.5 - 1646.5
1660 - 1710
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 - 3358
3500 - 4400
4500 - 5150
5350 - 5460
7250 - 7750
8025 - 8500

GHz
9.0 - 9.2
9.3 - 9.5
10.6 - 12.7
13.25 - 13.4
14.47 - 14.5
15.35 - 16.2
17.7 - 21.4
22.01 - 23.12
23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
Above 38.6

TE,

OV

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Edition:

A.5

Page 22 of 48

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 Test Result

	Polar (H/V)		5	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result
	(174)	(11112)	(dBuV/m)	(dB)	РК	PK	AV	
			Low	v Channel 24	02MHz			
	Н	2390.00	54.54	-6.70	47.84	74.00	54.00	PASS
	Н	2400.00	57.58	-6.71	50.87	74.00	54.00	PASS
	V	2390.00	54.65	-6.70	47.95	74.00	54.00	PASS
GFSK	V	2400.00	59.17	-6.71	52.46	74.00	54.00	PASS
OI SK			Higl	h Channel 24	480MHz			
	Н	2483.50	56.77	-6.79	49.98	74.00	54.00	PASS
	Н	2500.00	53.51	-6.81	46.70	74.00	54.00	PASS
	V	2483.50	57.92	-6.79	51.13	74.00	54.00	PASS
	V	2500.00	55.07	-6.81	48.26	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

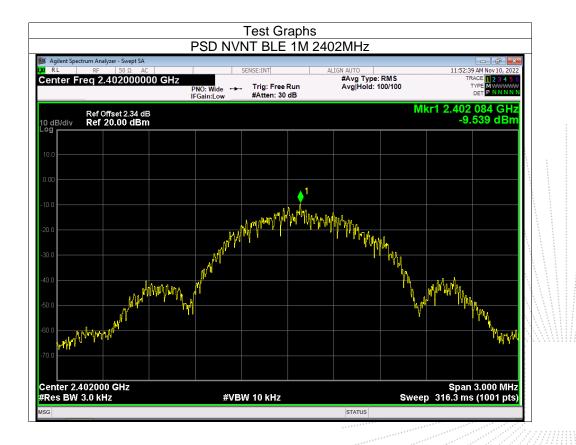
9.2 Limit

RSS-247 5.2							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
RSS-247 5.2	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

9.5 Test Result

Temperature :	emperature : 26°C		Relative Humidity :			54%		
Test Mode :	GFSK		Test Voltage : D		DC 12V	DC 12V		
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm)	Limi	t (dBm)	Verdict		
NVNT	BLE 1M	2402	-9.54		8	Pass		
NVNT	BLE 1M	2440	-9.4		8	Pass		
NVNT	BLE 1M	2480	-10.79		8	Pass		

E

А

》测

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

RSS-247 5.2						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
RSS-247 5.2	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

10.3 Test Procedure

- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

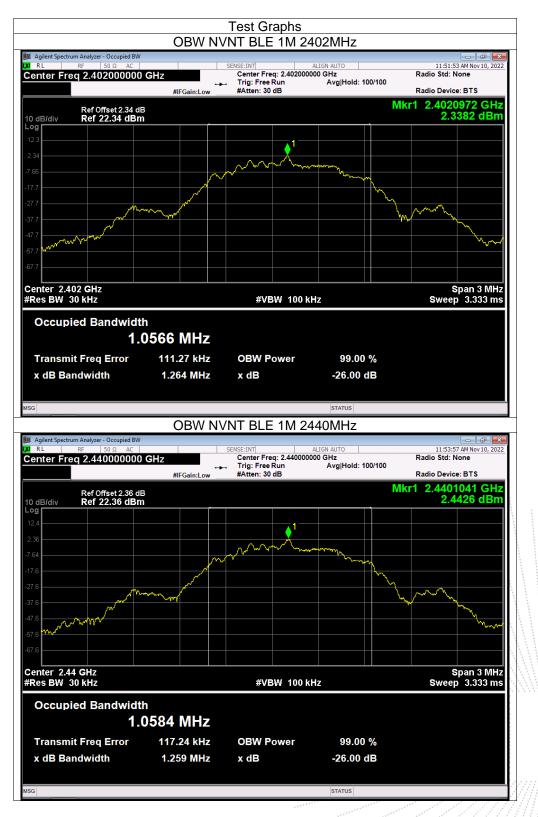
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

10.5 Test Result

Temperature :	perature : 26°C		F	Relative Humidity :	54%	54%		
Test Mode :		GFSK Test Voltage :		Fest Voltage :	DC 12V			
Condition	Mode	Frequency (MHz)	-6 dB Bandwid (MHz)		Limit -6 dB Bandwidth (MHz)	Verdict		
NVNT	BLE 1M	2402	0.677	1.057	0.5	Pass		
NVNT	BLE 1M	2440	0.692	1.058	0.5	Pass		
NVNT	BLE 1M	2480	0.682	1.06	0.5	Pass		


) ED

6 CO.,LTA

P E A

No.: BCTC/RF-EMC-005

Page 32 of 48

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

		RSS-247 5.4	(b)	
Section	Test Item	Limit	Frequency Range (MHz)	Result
RSS-247 5.4 (b)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

濒

No.: BCTC/RF-EMC-005

Page 33 of 48

11.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 12V

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	EIRP (dBm)	EIRP LIMIT (dBm)	Verdict
NVNT	BLE 1M	2402	4.63	30	-2.60	36	Pass
NVNT	BLE 1M	2440	4.74	30	-2.49	36	Pass
NVNT	BLE 1M	2480	3.3	30	-3.93	36	Pass

Note: 1. EIRP= Output Power+Antenna Gain. 2. Antenna Gain=-7.23 dBi.

TE, T(

OV

No.: BCTC/RF-EMC-005

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

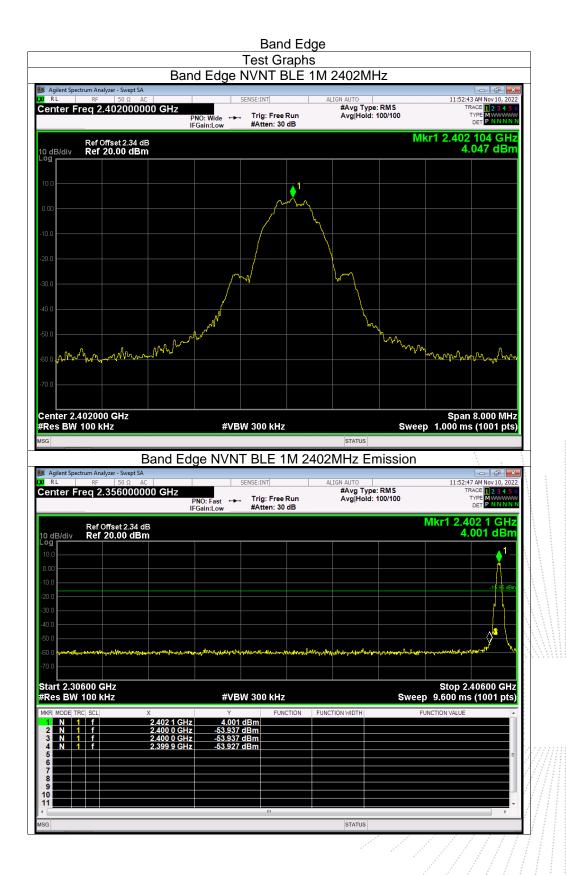
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section RSS-247 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

12.3 Test Procedure

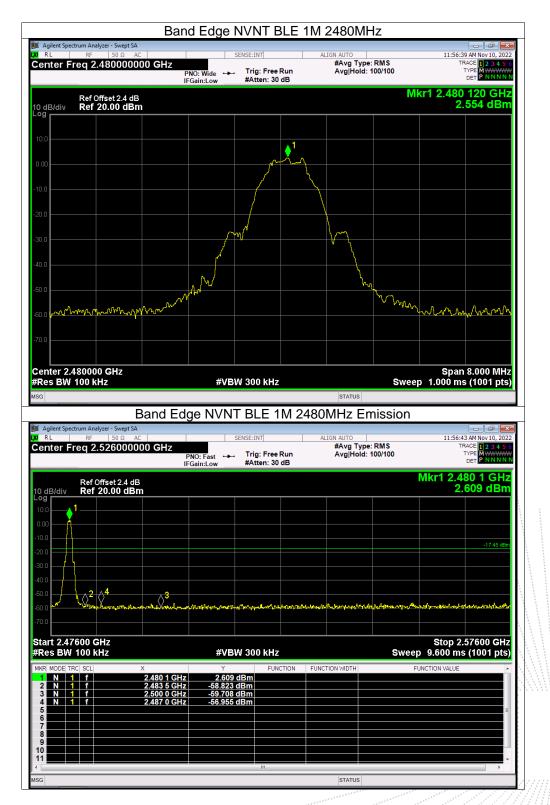
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..


12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 35 of 48



12.5 Test Result

2 CO.,LTA

E

Page 39 of 48

13. Duty Cycle Of Test Signal

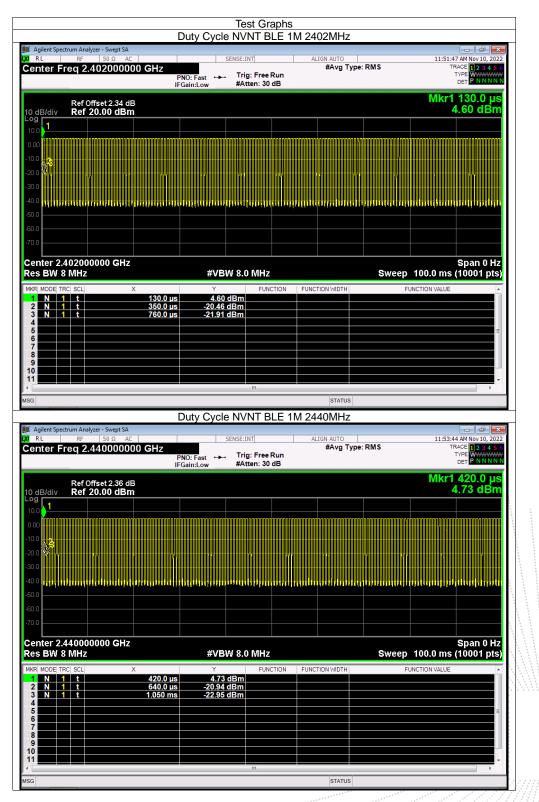
13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula:

Duty Cycle = Ton / (Ton+Toff)

13.3 Measurement Procedure:


1. Set span = Zero

- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

13.4 Test Result

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)			
NVNT	BLE 1M	2402	67.75	1.69	2.44			
NVNT	BLE 1M	2440	67.74	1.69	2.44			
NVNT	BLE 1M	2480	67.69	1.69	2.44			

				Duty Cycl	e NVI	NT BLE	1M 24	80MHz					
		alyzer - Swept SA											r 💌
RL	RF	50 Ω AC			SENSE:IN	T	AL	IGN AUTO	DMC		11:	55:37 AM N	
enter F	-req 2	.4800000		PNO: Fast ↔	Tria	: Free Run		#Avg Ty	pe: RIVIS				2345 www.ww
				Gain:Low		en: 30 dB						DET P	NNNN
											ML	r1 370	0.0.0
0.10/10		Offset 2.4 dB 20.00 dBn										-23.70	dBm
0 dB/div	Rei	20.00 060			1							20.10	abiii
10.0													
o. oo Yaan	nnnnnnn	ההההההההההה	nananananananan		nnnnnnn	וחחחחחחחחחחח	nnnnnnnnr	הההההההה	מההההההההה	nnnnnn	החחחחחחחח	החטטטיייייייייייייייייייייייייייייייייי	nnnnnnn
10.0										iiiii			
20.0											.,,		
30.0													
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****		(TATA) I SADIATIA	,,,,,,,,,,,,		i i i i i i i i i i i i i i i i i i i	TANKARA	All and the state of the state	n di	ANNA I ANNA A		i)))))))
50.0													
60.0													
70.0													
center 2	.4800	00000 GHz										Spa	n 0 Hz
tes BW	8 MHz	2		#VB	W 8.0	MHz			Sw	eep	100.0 n	ns (100	01 pts)
KR MODE T	FRC SCL		x	Y		FUNCTION	FUNC	TION WIDTH		FL	INCTION VAL	UE	•
	1 t		370.0 µs										
2 N 3 N	1 t		580.0 µs 990.0 µs	-22.22	dBm								
4			990.0 µs	3.28									
5													=
6													
8													
9													
10													
				-									•

CHENZHE.

No.: BCTC/RF-EMC-005

Edition: A.5

14. Antenna Requirement

14.1 Limit

According to RSS-Gen issue 5, section 8.3, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

14.2 Test Result

The EUT antenna is FPC antenna, fulfill the requirement of this section.

Edition: A.5

15. EUT Photographs

EUT Photo

NOTE: Appendix-Photographs Of EUT Constructional Details



Edition: A.5

16. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page 47 of 48

Edition: A.5

ΞD

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The test report without CMA mark is only used for scientific research, teaching, enterprise product development and internal quality control purposes.

8. The quality system of our laboratory is in accordance with ISO/IEC17025.

9. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

******** END *******

No.: BCTC/RF-EMC-005