

TEST REPORT

Report No.:	BCTC2304709645-6E						
Applicant:	ROCKPI TRADING LIMITED						
Product Name:	Radxa ROCK 3 Model C						
Model/Type Ref.:	Radxa ROCK 3 Model C						
Tested Date:	2023-04-07 to 2023-05-17						
Issued Date:	2023-05-26						
She	enzhen BCTC Testing Co., Ltd.						
No. : BCTC/RF-EMC-005	Page 1 of 62 Edition ; A.5						
	Page 1 of 62						

Product Name:	Radxa ROCK 3 Model C
Trademark:	N/A
Model/Type Ref.:	Radxa ROCK 3 Model C Radxa ROCK 3 Model C 1GB, Radxa ROCK 3 Model C 2GB, Radxa ROCK 3 Model C 4GB, Radxa ROCK 3 Model C 8GB
Prepared For:	ROCKPI TRADING LIMITED
Address:	Room 11, 27 / f, Ga wah international centre, 191 Javaroad, north point, Hong Kong
Manufacturer:	ROCKPI TRADING LIMITED
Address:	Room 11, 27 / f, Ga wah international centre, 191 Javaroad, north point, Hong Kong
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-04-07
Sample tested Date:	2023-04-07 to 2023-05-17
Issue Date:	2023-05-26
Report No.:	BCTC2304709645-6E
Test Standards	ETSI EN 301 893 V2.1.1 (2017-05)
Test Results	PASS
Remark:	This is WIFI-5.1GHz band radio test report.

Tested by:

Brave Zem

Brave Zeng/ Project Handler

Approved by:

X

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No. : BCTC/RF-EMC-005

Page 2 of 62 "

Edition , A.5

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Test Environment	
4.0 5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
5.z 6.	Information As Required	
0. 7.	Nominal Centre Frequencies	
7. 7.1		
7.1	Block Diagram Of Test Setup	
7.2 7.3	Test Procedure	
7.3 7.4		
	Test Result.	
8.	Nominal Channel Bandwidth And Occupied Channel Bandwidth	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test Procedure	
8.4		
9.	RF Output Power, Transmit Power Control (TPC)	
9.1	Block Diagram Of Test Setup	
9.2	Limit	
9.3	Test Procedure	
9.4	Test Result	
10.	Power Spectral Density	
10.1	Block Diagram Of Test Setup	
10.2		
10.3		
10.4		
11.	Transmitter Unwanted Emissions In The Spurious Domain	32
11.1	Block Diagram Of Test Setup Limits	32
11.2	Limits	33
11.3	Test Procedure Test Results	33
11.4		
12.	Transmitter Unwanted Emissions In The Out-Of-Band Domain	35
12.1	Block Diagram Of Test Setup	35
12.2		35
12.3		35
	RF-EMC-005 Page 3 of 62 Edition	
SCIC/F	RF-EMC-005 Page 3 of 62 Edition	N. 🤉

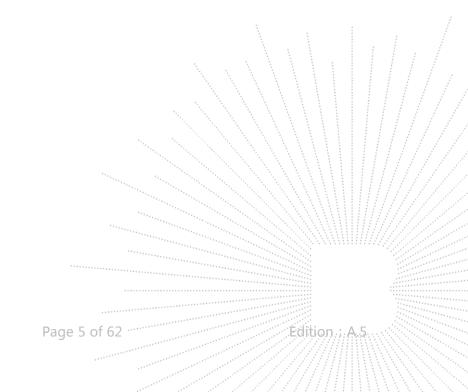
JC 3C

PR

测

12.4 Test Result	
13. Receiver Spurious Emissions	50
13.1 Block Diagram Of Test Setup	50
13.2 Limits	50
13.3 Test Procedure	51
13.4 Test Results	
14. Adaptivity	53
14.1 Block Diagram Of Test Setup	53
14.2 Limit	53
14.3 Test Procedure	54
14.4 Test Result	54
15. Receiver Blocking	55
15.1 Block Diagram Of Test Setup	55
15.2 Limit	
15.3 Test Procedure	
15.4 Test Result	56
16. EUT Photographs	57
17. EUT Test Setup Photographs	61

Page 4 of 62


(Note: N/A Means Not Applicable)

Edition : A.5

1. Version

Report No.	Issue Date	Description	Approved
BCTC2304709645-6E	2023-05-26	Original	Valid

No. : BCTC/RF-EMC-005

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Nominal Centre frequencies	4.2.1	PASS
2	Nominal Channel Bandwidth and Occupied Channel Bandwidth	4.2.2	PASS
3	RF output power, Transmit Power Control (TPC) and Power Density	4.2.3	PASS
4	Transmitter unwanted emissions	4.2.4	PASS
5	Receiver spurious emissions	4.2.5	PASS
6	Dynamic Frequency Selection (DFS)	4.2.6	PASS
7	Adaptivity (Channel Access Mechanism)	4.2.7	PASS
8	Receiver Blocking	4.2.8	PASS
9	User Access Restrictions	4.2.9	PASS

Note: N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

2 00.,175

No.: BCTC/RF-EMC-005

Page 6 of 62 ·

Edition ; A.5

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

RF frequency	1 x 10 ⁻⁷
RF power, conducted	± 1.0 dB
Conducted emission of receivers	±1 dB
Radiated emission of transmitter	± 6 dB
Radiated emission of receiver	± 6 dB
Temperature	±1 degree
Humidity	±5%

4. **Product Information And Test Setup**

Product Information 4.1

Model/Type Ref.	Radxa ROCK 3 Model C Radxa ROCK 3 Model C 1GB, Radxa ROCK 3 Model C 2GB, Radxa ROCK 3 Model C 4GB, Radxa ROCK 3 Model C 8GB
Model differences:	All the model are the same circuit and RF module, except model names.
Hardware Version:	V1.32
Software Version:	V1.0
Operation Frequency:	WIFI(5.1GHz): IEEE 802.11a/n/ac HT20:5180MHz-5240MHz IEEE 802.11n/ac HT40:5190MHz-5230MHz IEEE 802.11ac HT80:5210MHz
Max. RF output power:	WIFI(5.1GHz): 2.5 dBm
Type of Modulation:	WIFI(5.1GHz): OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
Antenna installation:	WIFI(5.1GHz): Internal antenna
Antenna Gain:	WIFI(5.1GHz): 2.3 dBi
Ratings:	DC 5V from adapter

Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1			Applicant		Yes/No	With a ferrite ring in mid Detachable
2			BCTC		Yes/No	

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
1.	Adapter		BCTC001		auxiliary

Notes:

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-005

^{1.} All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

,TC

3C

测

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
36	5180	38	5190	40	5200	42	5210
44	5220	46	5230	48	5240		

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting(802.11a HT20)	5180MHz	5200 MHz	5240 MHz
Transmitting(802.11n HT20)	5180MHz	5200 MHz	5240 MHz
Transmitting(802.11n HT40)	5190Mhz	/	5230 MHz
Transmitting(802.11ac HT20)	5190Mhz	5590MHz	5230 MHz
Transmitting(802.11ac HT40)	5190Mhz	/	5230 MHz
Transmitting(802.11ac HT80)	/	5200 MHz	/
Receiving(802.11a HT20)	5180MHz	5200 MHz	5240 MHz
Receiving(802.11n HT20)	5180MHz	5200 MHz	5240 MHz
Receiving(802.11n HT40)	5190Mhz	/	5230 MHz
Receiving(802.11ac HT20)	5190Mhz	5590MHz	5230 MHz
Receiving(802.11ac HT40)	5190Mhz	1	5230 MHz
Receiving(802.11ac HT80)		5210 MHz	/

4.6 Test Environment

1. Normal Test Conditions:

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Temperature(℃):	26
Test Voltage(DC):	5V

2.Extreme Test Conditions:

For tests at extreme temperatures, measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.

Test Conditions	LT	HT
Temperature (°C)	0	35
No. : BCTC/RF-EMC-005	Page 9 of 62	Edition.; A.5

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

ltem	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	966 chamber	SKET	966 Room	966	Nov. 02. 2021	Nov. 01.2024
2	Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023
3	Receiver	R&S	ESRI7	100010	Nov. 08. 2022	Nov. 07.2023
4	Amplifier	SKET	LNPA-30M01 G-30	SK2021082004	Nov. 08. 2022	Nov. 07.2023
5	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	1323	Mar. 06, 2022	Mar. 05, 2024
6	Loop Antenna	Schwarzbeck	FMZB1519B	00014	Jun. 06, 2022	Jun. 05, 2023
7	Amplifier	SKET	LAPA_01G18 G-45dB	١	May 24, 2022	May 23, 2023
8	Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 06, 2022	Jun. 05, 2023
9	Preamplifier	MITEQ	TTA1840-35- HG	2034381	May 24, 2022	May 23, 2023
10	Horn antenna	Schwarzbeck	BBHA9170	00822	Jun. 06, 2022	Jun. 05, 2023
11	Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40	100363	May 24, 2022	May 23, 2023
12	Software	Frad	EZ-EMC	FA-03A2 RE	λ_{-1}	λ_{i}
13	Spectrum Analyzer	Keysight	N9020A	MY49100060	May 24, 2022	May 23, 2023
14	Signal Generator	Keysight	N5182B	MY56200519	May 24, 2022	May 23, 2023
15	Signal Generator	Keysight	83711B	US37100131	Aug. 29, 2022	Aug. 28, 2023
16	Communication test set	R&S	CMW500	126173	Nov. 08, 2022	Nov. 07, 2023
17	D.C. Power Supply	LongWei	TPR-6405D	$\sum_{i=1,\dots,n}$		
18	Programmable constant temperature and humidity test chamber	DGBELL	BTKS5-150C		Jun. 30, 2022	Jun. 29, 2023
19	Radio frequency control box	MAIWEI	MW100-RFC B		\boldsymbol{V}	/
20	Software	MAIWEI	MTS 8310	····· <i>t</i> ·····		\

No. : BCTC/RF-EMC-005

Page 10 of 62....

Edition A.5

TE,

T(

Information As Required 6.

ETSI EN 301 893 V2.1.1 Annex G

TSI EN 301 893 V2.1.1 Annex G	
a) The Nominal Channel Bandwidth(s):
Refer to section 4.4 channel list.	
b) For Load Based Equipment that set	upports multi-channel operation:
N/A	
c) The different transmit operating m	nodes (see clause 5.3.3.2) (tick all that apply):
Operating mode 1: Single Antenna	a Equipment
a) Equipment with only 1 antenr	18
I) In case of Smart Antenna Systems	
The number of Receive chains:	/
The number of Transmit chains:	
Equal power distribution among the tra	ansmit chains: □Yes □No
	n (additional) beamforming gain: Db
	lude the basic gain of a single antenna (assembly).
e) TPC feature available:	
☐Yes ⊠No	
) For equipment with TPC range:	
	(or lowest and highest e.i.r.p. level in case of integrated antenna
	blies and corresponding operating frequency range for the TPC
range (or for each of the TPC ranges	
g) For equipment without a TPC range	
Power Setting 1: Max.	jo.
n) The DFS related operating mode(s	s) of the equipment:
N/A	
) User access restrictions (please ch	neck box below to confirm):
N/A	
) For equipment with Off-Channel C	AC functionality:
N/A	no functionality.
k) The equipment can operate in ad-	hac mode:
N/A	
) Operating Frequency Range(s):	
Refer to section 4.1.	
	re and supply voltage range that apply to the equipment:
Refer to section 4.6	
	sed (see also ETSI EN 301 893 (V2.1.1), clause 5.3.1.2):
Provide by manufacturer.	sed (see also LTSI LN 501 095 (v2.1.1); clause 5.5.1.2).
כ) Type of Equipment: ⊠Stand-alone	
	here the radio part is fully integrated within another time of
	here the radio part is fully integrated within another type of
equipment)	redeal for a variativ of base average
Plug-in radio device (Equipment inte	
b) Adaptivity (Channel Access Mech	anism):
Frame Based Equipment	\sim
Load Based Equipment	
) With regards to Adaptivity for Fran	
The Frame Based Equipment operat	
The Frame Based Equipment operat	
Libe I reme Deced Equipment con or	perate as an Initiating Device and as a Responding Device
	d Based Equipment
) With regards to Adaptivity for Load	
) With regards to Adaptivity for Load	
) With regards to Adaptivity for Load N/A s) The equipment supports a geo-loo	cation capability as defined in clause 4.2.10 of ETSI EN 301
) With regards to Adaptivity for Load N/A s) The equipment supports a geo-loc 393 V2.1.1:	
) With regards to Adaptivity for Load	cation capability as defined in clause 4.2.10 of ETSI EN 301

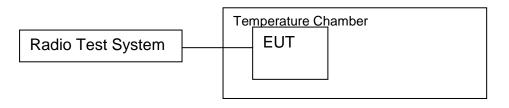
Page 11 of 62) ED

☐Yes ⊠No t) The minimum performance criteria (see ETSI EN 301 893 V2.1.1, clause 4.2.8.3) that corresponds to the intended use of the equipment:

The minimum performance criterion is a PER of less than or equal to 10 %.

u) The theoretical maximum radio performance of the equipment (e.g. maximum throughput) (see ETSI EN 301 893 V2.1.1, clause 5.4.9.3.1):

N/A



Edition A.5

7. Nominal Centre Frequencies

7.1 Block Diagram Of Test Setup

7.2 Limit

The Nominal Centre Frequencies (fc) for a Nominal Channel Bandwidth of 20 MHz are defined by equation (1). See also figure 3.

fc = 5 160 + (g × 20) MHz, where $0 \le g \le 9$ or $16 \le g \le 27$ and where g shall be an integer.

A maximum offset of the Nominal Centre Frequency of ± 200 kHz is permitted. Where the manufacturer decides to make use of this frequency offset, the manufacturer shall declare the actual centre frequencies used by the equipment.

See clause 5.4.1, item a).

The actual centre frequency for any given channel shall be maintained within the range fc \pm 20 ppm. Equipment may have simultaneous transmissions on more than one Operating Channel with a Nominal Channel Bandwidth of 20 MHz.

7.3 Test Procedure

This method is an alternative to the above method in case the UUT cannot be operated in an un-modulated mode.

The UUT shall be connected to spectrum analyser.

Max Hold shall be selected and the centre frequency adjusted to that of the UUT.

The peak value of the power envelope shall be measured and noted. The span shall be reduced and the marker moved in a positive frequency increment until the upper, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f1.

The marker shall then be moved in a negative frequency increment until the lower, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f2.

The centre frequency is calculated as (f1 + f2) / 2.

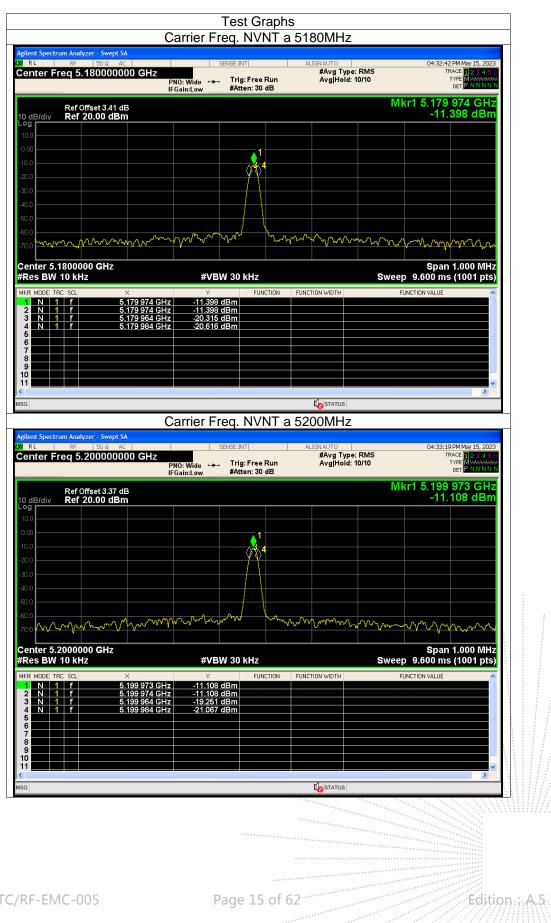
No.: BCTC/RF-EMC-005

Page 13 of 62"

Edition : A.5

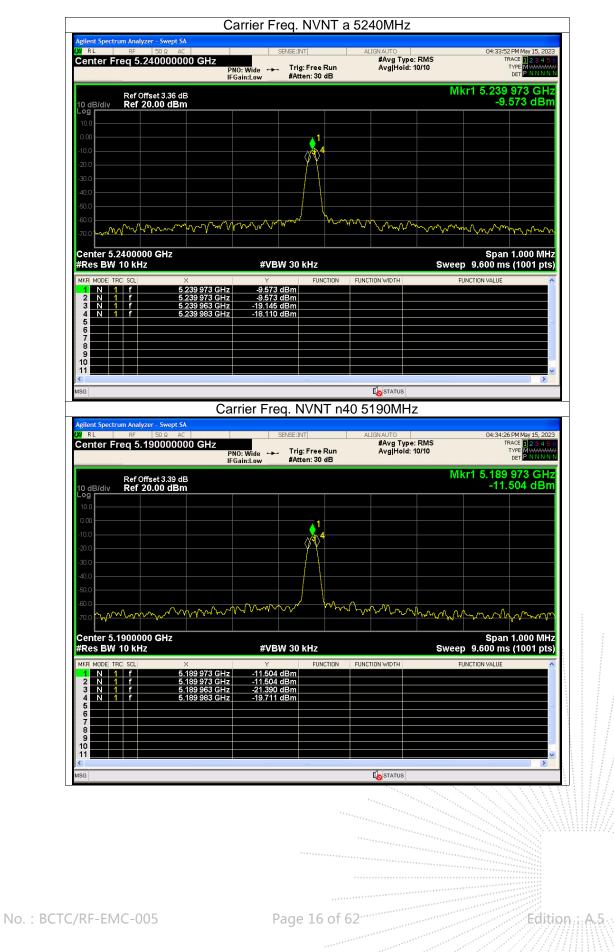
7.4 Test Result

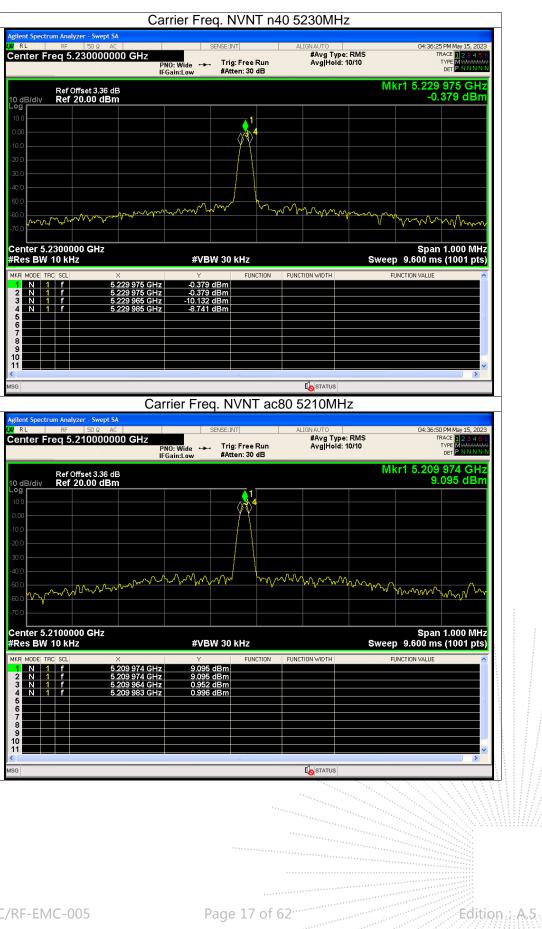
	Test conditions		Frequency Measured (MHz)				
Modulation			Low channel	Middle channel	High channel		
			5180.0000	5200.0000	5240.0000		
	Normal		5179.9740	5199.9740	5239.9730		
	Extreme	LTLV	5179.9789	5199.9773	5239.9751		
Unmodulation		LTHV	5179.9838	5199.9806	5239.9801		
		HTLV	5179.9883	5199.9806	5239.9842		
		HTHV	5179.9932	5199.9832	5239.9875		
Ma	Max.Error(ppm)		-5.02	-5.00	-5.15		
L	.imit (ppm)		±20	±20	±20		


	Test conditions		Frequency Measured (MHz)					
Modulation			Low channel	Middle channel	High channel			
			5200.0000	/	5190.0000			
	Normal		5189.9730	/	5229.9750			
	Extreme	LTLV	5189.9743	/	5229.9793			
Unmodulation		LTHV	5189.9752	/	5229.9838			
		HTLV	5189.9758	/	5229.9860			
		HTHV	5189.9758	/	5229.9876			
Ma	Max.Error(ppm)		-5.20	/	-4.78			
Limit (ppm)		±20	/	±20				

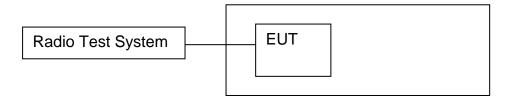
	Test conditions		Frequency Measured (MHz)				
Modulation			Low channel	Middle channel	High channel		
			/	5210.0000	/		
	Normal		/	5209.9735	/		
	Extreme	LTLV	/	5209.9739	/		
Unmodulation		LTHV	/	5209.9760	/		
		HTLV	/	5209.9791	/		
		HTHV	/	5209.9832	/		
Ma	Max.Error(ppm)		/	-5.09	/		
Limit (ppm)		/	±20	1.			

Edition A.5





TE TC OVE



) ED

8. Nominal Channel Bandwidth And Occupied Channel Bandwidth

8.1 Block Diagram Of Test Setup

8.2 Limit

The Nominal Channel Bandwidth for a single Operating Channel shall be 20 MHz.

Alternatively, equipment may implement a lower Nominal Channel Bandwidth with a minimum of 5 MHz, providing they still comply with the Nominal Centre Frequencies defined in clause 4.2.1 (20 MHz raster). The Occupied Channel Bandwidth shall be between 80 % and 100 % of the Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement.

The Occupied Channel Bandwidth might change with time/payload.

8.3 Test Procedure

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: The centre frequency of the channel under test
- Resolution Bandwidth: 100 kHz
- Video Bandwidth: 300 kHz
- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Sweep time: > 1 s; for larger Nominal Bandwidths, the sweep time may be increased until a value where the sweep time has no impact on the RMS value of the signal
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

• Wait for the trace to stabilize.

Step 3:

Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.
Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

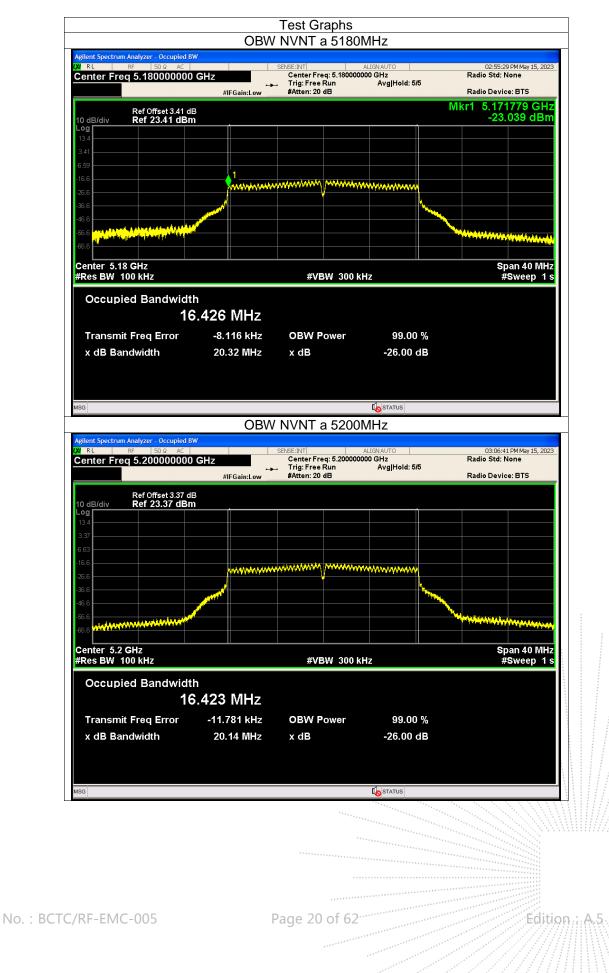
The measurement described in step 1 to step 3 above shall be repeated in case of simultaneous transmissions in non-adjacent channels.

Page 18 of 62 Edition : A.5

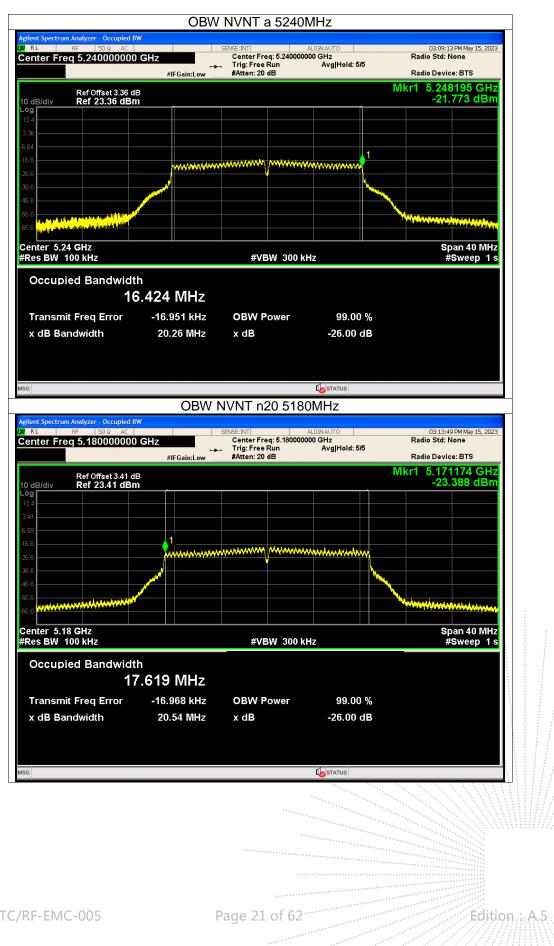
No.: BCTC/RF-EMC-005

8.4 Test Result

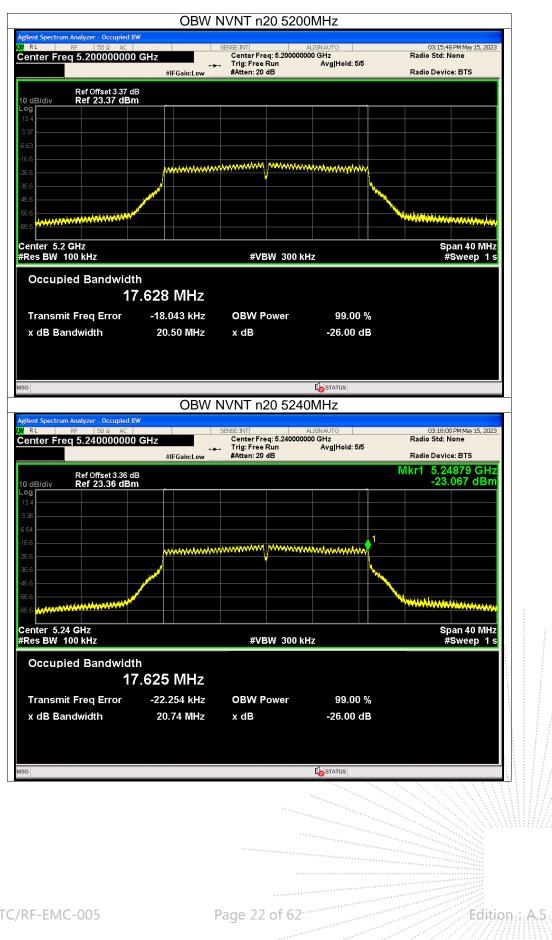
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Verdict
NVNT	а	5180	5179.992	16.426	Pass
NVNT	а	5200	5199.988	16.423	Pass
NVNT	а	5240	5239.983	16.424	Pass
NVNT	n20	5180	5179.983	17.619	Pass
NVNT	n20	5200	5199.982	17.628	Pass
NVNT	n20	5240	5239.978	17.625	Pass
NVNT	n40	5190	5190.03	36.109	Pass
NVNT	n40	5230	5230.034	36.072	Pass
NVNT	ac20	5180	5179.984	17.627	Pass
NVNT	ac20	5200	5199.985	17.631	Pass
NVNT	ac20	5240	5239.98	17.626	Pass
NVNT	ac40	5190	5190.035	36.104	Pass
NVNT	ac40	5230	5230.032	36.061	Pass
NVNT	ac80	5210	5210.212	75.325	Pass

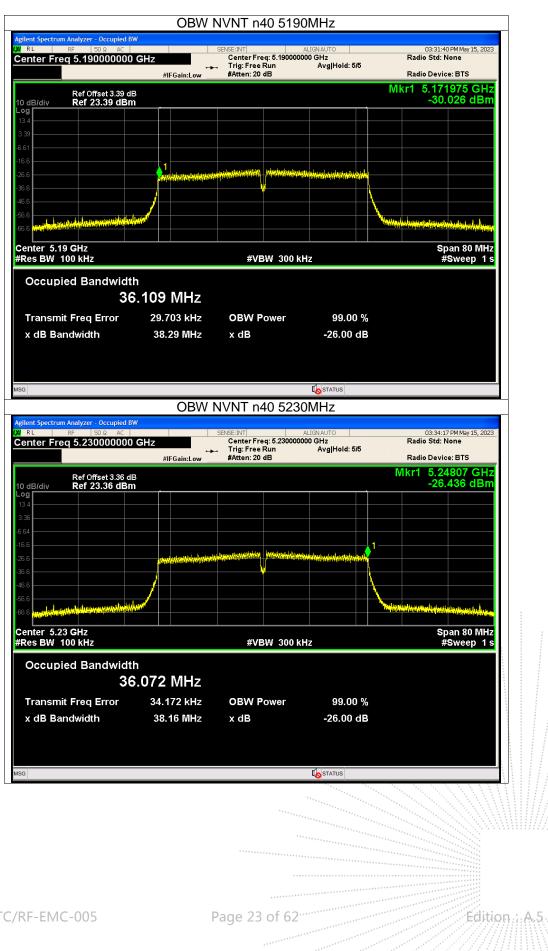


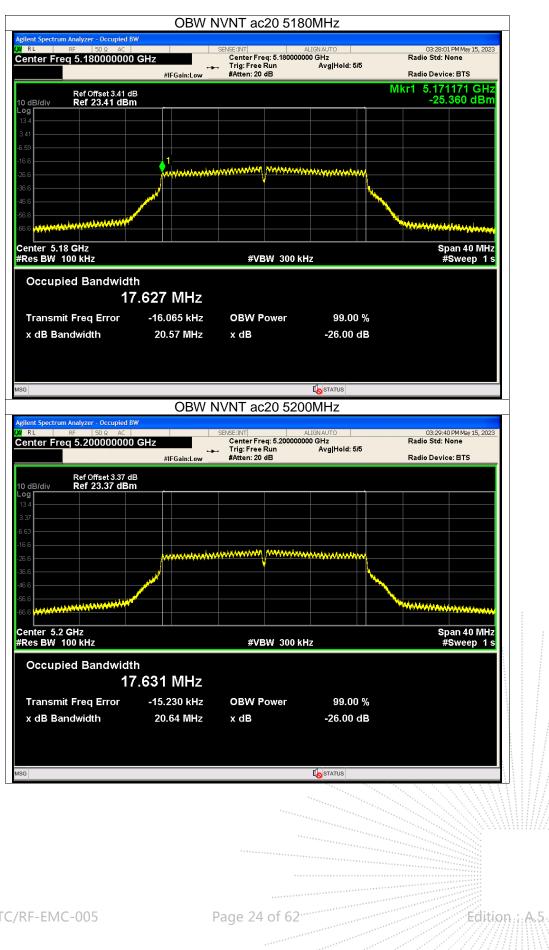
No. : BCTC/RF-EMC-005


Page 19 of 62"

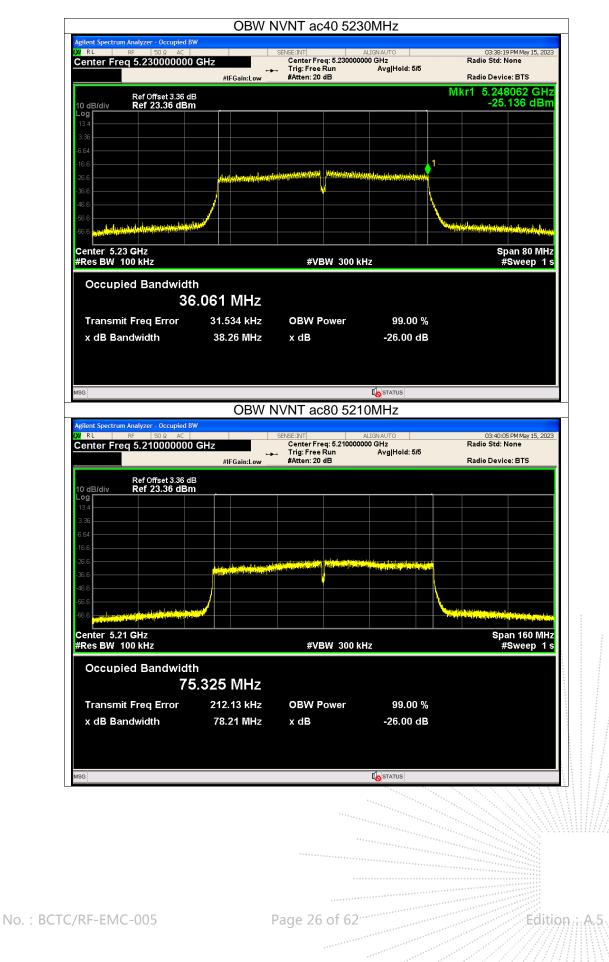
Edition A.5



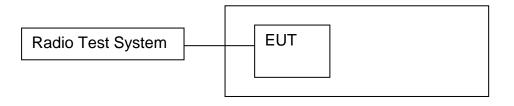








CHENZHE.



9. RF Output Power, Transmit Power Control (TPC)

9.1 Block Diagram Of Test Setup

9.2 Limit

Frequency	Mean e.i.r.p.		Mean e.i.r.p. density limit (dBm/MHz)			
range	(dBi	m)	(abm/	MHZ)		
(MHz)	with TPC	without TPC	with TPC	without TPC		
5 150 to 5 350	23	20/23 (see note 1)	10	7/10 (see note 2)		
5 470 to 5 725	70 to 5 725 30 (see note 3) 27 (see note 3)		17 (see note 3)	14 (see note 3)		
NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm.						
NOTE 2: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.						
	e devices without a <i>Radar</i> ency range 5 250 MHz to		n function shall comply	with the limits for the		

9.3 Test Procedure

This option is for equipment that operates only in one sub-band or that is capable for operation in two sub-bands simultaneously but, for the purpose of the testing, the equipment can be configured to:

- operate in a continuous transmit mode or with a constant duty cycle (x), and
- operate only in one sub-band.

Step 1:

For equipment configured into a continuous transmit mode (x = 1), proceed immediately with step 2. • The output power of the transmitter shall be coupled to a matched diode detector or equivalent

thereof. The output of the diode detector shall be connected to the vertical channel of an oscilloscope.

 The combination of the diode detector and the oscilloscope shall be capable of faithfully reproducing the duty cycle of the transmitter output signal.

• The observed duty cycle of the transmitter (Tx on / (Tx on + Tx off)) shall be noted as x ($0 < x \le 1$), and recorded in the test report.

Step 2:

• The RF output power shall be determined using a wideband RF power meter with a thermocouple detector or an equivalent thereof and with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be noted as A (in dBm).

• In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall be measured separately to calculate the total power (value A in dBm) for the UUT.

Step 3:

• The RF output power at the highest power level PH (e.i.r.p.) shall be calculated from the above measured power output A (in dBm), the observed duty cycle x, the stated antenna gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report.

If more than one antenna assembly is intended for this power setting or TPC range, the gain of the antenna assembly with the highest gain shall be used.

 $PH = A + G + Y + 10 \times \log(1 / x) (dBm).$ (5)

• This value PH shall be compared to the applicable limit contained in table 2 of clause 4.2.3.2.2.

9.4 Test Result

Remark: PH = A + G + Y + 10 × log (1 / x) (dBm) Antenna Gain G=2.3 dBi, beamforming gain Y= 0 dB, duty cycle X=100%

Condition	Mode	Frequency (MHz)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	-1.20	68	1.1	23	Pass
NVNT	а	5200	-0.41	68	1.89	23	Pass
NVNT	а	5240	-0.06	68	2.24	23	Pass
NVLT	а	5180	-1.33	68	0.97	23	Pass
NVLT	а	5200	-0.45	68	1.85	23	Pass
NVLT	а	5240	0.20	67	2.5	23	Pass
NVHT	а	5180	-1.29	68	1.01	23	Pass
NVHT	а	5200	-0.46	68	1.84	23	Pass
NVHT	а	5240	0.15	68	2.45	23	Pass
NVNT	n20	5180	-2.74	72	-0.44	23	Pass
NVNT	n20	5200	-2.20	72	0.1	23	Pass
NVNT	n20	5240	-1.39	72	0.91	23	Pass
NVLT	n20	5180	-2.68	72	-0.38	23	Pass
NVLT	n20	5200	-2.18	72	0.12	23	Pass
NVLT	n20	5240	-1.36	72	0.94	23	Pass
NVHT	n20	5180	-2.65	72	-0.35	23	Pass
NVHT	n20	5200	-2.17	72	0.13	23	Pass
NVHT	n20	5240	-1.40	72	0.9	23	Pass
NVNT	n40	5190	-2.02	134	0.28	23	Pass
NVNT	n40	5230	-1.13	135	1.17	23	Pass
NVLT	n40	5190	-2.20	134	0.1	23	Pass
NVLT	n40	5230	-1.22	134	1.08	23	Pass
NVHT	n40	5190	-2.21	134	0.09	23	Pass
NVHT	n40	5230	-1.19	134	1,11	23	Pass
NVNT	ac20	5180	-2.75	72	-0.45	23	Pass
NVNT	ac20	5200	-2.10	72	0.2	23	Pass
NVNT	ac20	5240	-0.72	71	1.58	23	Pass
NVLT	ac20	5180	-2.78		-0.48	23	Pass

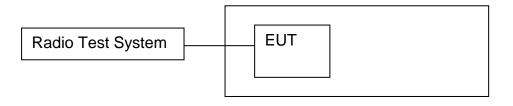
No. : BCTC/RF-EMC-005

Page 28 of 62...

Edition A.5

NVLT	ac20	5200	-2.07	72	0.23	23	Pass
NVLT	ac20	5240	-0.48	71	1.82	23	Pass
NVHT	ac20	5180	-2.71	72	-0.41	23	Pass
NVHT	ac20	5200	-2.06	72	0.24	23	Pass
NVHT	ac20	5240	-0.56	71	1.74	23	Pass
NVNT	ac40	5190	-2.18	133	0.12	23	Pass
NVNT	ac40	5230	-1.10	133	1.2	23	Pass
NVLT	ac40	5190	-2.38	133	-0.08	23	Pass
NVLT	ac40	5230	-1.16	133	1.14	23	Pass
NVHT	ac40	5190	-2.20	133	0.1	23	Pass
NVHT	ac40	5230	-1.18	133	1.12	23	Pass
NVNT	ac80	5210	-1.13	236	1.17	23	Pass
NVLT	ac80	5210	-1.21	236	1.09	23	Pass
NVHT	ac80	5210	-1.20	236	1.1	23	Pass

No. : BCTC/RF-EMC-005



Edition A.5

10. Power Spectral Density

10.1 Block Diagram Of Test Setup

10.2 Limit

Frequency	Mean e.i.r.p.	limit for P _H	Mean e.i.r.p. density limit							
range	(dBı	m)	(dBm/	MHZ)						
(MHz)	with TPC	without TPC	with TPC	without TPC						
5 150 to 5 350	23	20/23 (see note 1)	10	7/10 (see note 2)						
5 470 to 5 725	0 to 5 725 30 (see note 3) 27 (see note 3)		17 (see note 3)	14 (see note 3)						
comp	NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm.									
NOTE 2: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.										
			n function shall comply	NOTE 3: Slave devices without a <i>Radar Interference Detection</i> function shall comply with the limits for the frequency range 5 250 MHz to 5 350 MHz.						

10.3 Test Procedure

This option is for equipment that can be configured to operate in a continuous transmit mode or with a constant duty cycle (x).

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: The centre frequency of the channel under test
- RBW: 1 MHz
- VBW: 3 MHz
- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Detector Mode: Peak
- Trace Mode: Max Hold

Step 2:

• When the trace is complete, find the peak value of the power envelope and record the frequency. Step 3:

- Make the following changes to the settings of the spectrum analyser:
- Centre Frequency: Equal to the frequency recorded in step 2
- Frequency Span: 3 MHz
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 minute
- Detector Mode: RMS

No.: BCTC/RF-EMC-005

Page 30 of 62

Edition A.5

- Trace Mode: Max Hold

Step 4:

• When the trace is complete, the trace shall be captured using the "Hold" or "View" option on the spectrum analyser.

• Find the peak value of the trace and place the analyser marker on this peak. This level is recorded as the highest mean power (Power Density) D in a 1 MHz band.

• Alternatively, where a spectrum analyser is equipped with a function to measure spectral Power Density, this function may be used to display the Power Density D in dBm / MHz.

• In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the Power Density of each transmit chain shall be measured separately to calculate the total Power Density (value D in dBm / MHz) for the UUT.

Step 5:

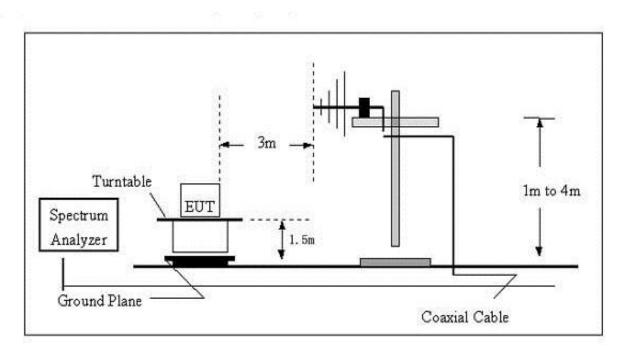
• The maximum spectral Power Density e.i.r.p. is calculated from the above measured Power Density D, the observed duty cycle x (see clause 5.4.4.2.1.1.2, step 1), the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used: PD = D + G + Y + 10 × log (1 / x) (dBm / MHz) (14)

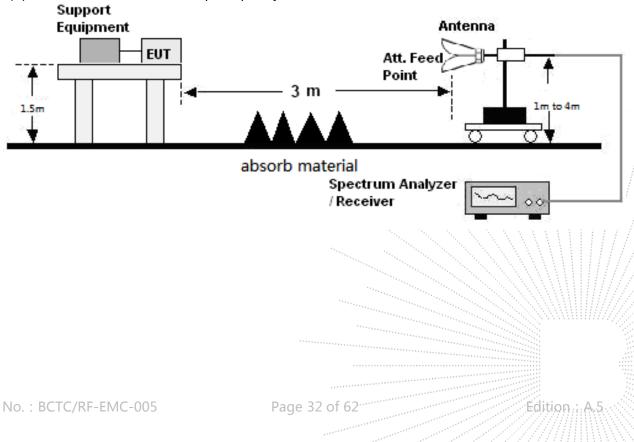
10.4 Test Result

Remark: $PH = A + G + Y + 10 \times \log (1 / x) (dBm)$

G= Antenna Gain=2.3dBi, beamforming gain Y= 0 dB, duty cycle X=100%

Condition Mode		Frequency (MHz)	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict	
NVNT	а	5180	-9.19	10	Pass	
NVNT	а	5200	-7.32	10	Pass	
NVNT	а	5240	-6.77	10	Pass	
NVNT	n20	5180	-9.63	10	Pass	
NVNT	n20	5200	-8.94	10	Pass	
NVNT	n20	5240	-8.43	10	Pass	
NVNT	n40	5190	-13.45	10	Pass	
NVNT	n40	5230	-12.38	10	Pass	
NVNT	ac20	5180	-11.06	10	Pass	
NVNT	ac20	5200	-10.47	10 ,	Pass	
NVNT	ac20	5240	-8.95	10	Pass	
NVNT	ac40	5190	-13.56	10	Pass	
NVNT	ac40	5230	-12.26	10	Pass	
NVNT	ac80	5210	-15.41	10	Pass	




11. Transmitter Unwanted Emissions In The Spurious Domain

11.1 Block Diagram Of Test Setup

(A)Radiated Emission Test Set-Up Frequency Below 1GHz.

(B)Radiated Emission Test Set-Up Frequency Above 1GHz.

11.2 Limits

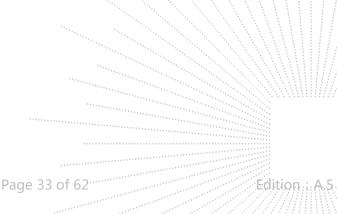
Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth		
30 MHz to 47 MHz	-36 dBm	100 kHz/300KHz		
47 MHz to 74 MHz	-54 dBm	100 kHz/300KHz		
74 MHz to 87,5 MHz	-36 dBm	100 kHz/300KHz		
87,5 MHz to 118 MHz	-54 dBm	100 kHz/300KHz		
118 MHz to 174 MHz	-36 dBm	100 kHz/300KHz		
174 MHz to 230 MHz	-54 dBm	100 kHz/300KHz		
230 MHz to 470 MHz	-36 dBm	100 kHz/300KHz		
470 MHz to 862 MHz	-54 dBm	100 kHz/300KHz		
862 MHz to 1 GHz	-36 dBm	100 kHz/300KHz		
1 GHz to 5.15 GHz	-30 dBm	1 MHz/3MHz		
5.35 GHz to 5.47 GHz	-30 dBm	1 MHz/3MHz		
5.725 GHz to 26 GHz	-30 dBm	1 MHz/3MHz		

11.3 Test Procedure

30MHz ~ 1GHz:

a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.


c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber..

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

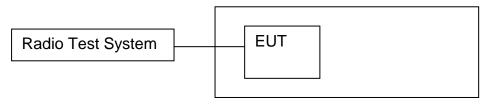
c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

SC PPR

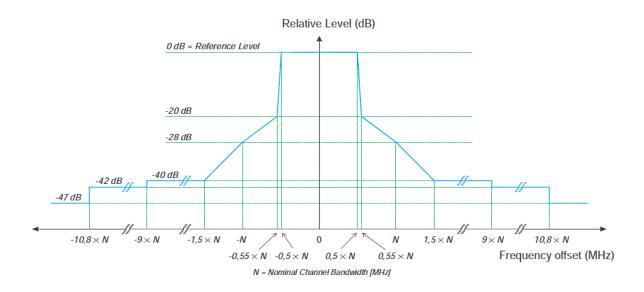
11.4 Test Results

All modes have been tested and reports show data in the worst mode Test Mode: Transmitting 802.11a (worst case)

Frequency	Receiver Reading	Turn table Angle	RX Antenna		Correct	Absolute	Result	
			Height	Polar	Factor	Level	Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dBm)	(dBm)	(dBm)	(dB)
			Low char	nel 5180	MHz			
559.82	-51.47	201	1.5	Н	-7.43	-58.90	-54	-4.90
559.82	-52.03	337	1.1	V	-7.43	-59.47	-54	-5.47
10360.00	-41.19	324	1.7	н	-0.43	-41.62	-30	-11.62
10360.00	-38.04	339	2.0	V	-0.43	-38.47	-30	-8.47
15540.00	-59.68	253	1.7	Н	8.31	-51.37	-30	-21.37
15540.00	-57.26	334	1.5	V	8.31	-48.95	-30	-18.95
	1	1	Mid chan	nel 5200	MHz	L	1	1
559.82	-52.30	181	1.8	Н	-7.43	-59.73	-54	-5.73
559.82	-51.19	213	1.4	V	-7.43	-58.62	-54	-4.62
10400.00	-40.56	109	1.3	н	-0.38	-40.94	-30	-10.94
10400.00	-37.30	110	1.1	V	-0.38	-37.68	-30	-7.68
15600.00	-60.10	62	1.6	Н	8.83	-51.27	-30	-21.27
15600.00	-58.16	156	1.6	V	8.83	-49.33	-30	-19.33
	1	l	High char	nnel 5240	MHz	L	1	I
559.82	-51.75	99	1.1	Н	-7.43	-59.18	-54	-5.18
559.82	-52.80	358	1.9	V	-7.43	-60.23	-54	-6.23
10480.00	-40.74	10	1.5	н	-0.32	-41.06	-30	-11.06
10480.00	-37.06	260	1.6	V	-0.32	-37.38	-30	-7.38
15720.00	-58.71	138	1.6	н	9.35	-49.36	-30	-19.36
15720.00	-56.67	343	1.6	V	9.35	-47.32	-30	-17.32


Page 34 of 62[.]

TE, T OV



12. Transmitter Unwanted Emissions In The Out-Of-Band Domain

12.1 Block Diagram Of Test Setup

12.2 Limit

12.3 Test Procedure

The UUT shall be configured for continuous transmit mode (duty cycle equal to 100 %). If this is not possible, then option 2 shall be used.

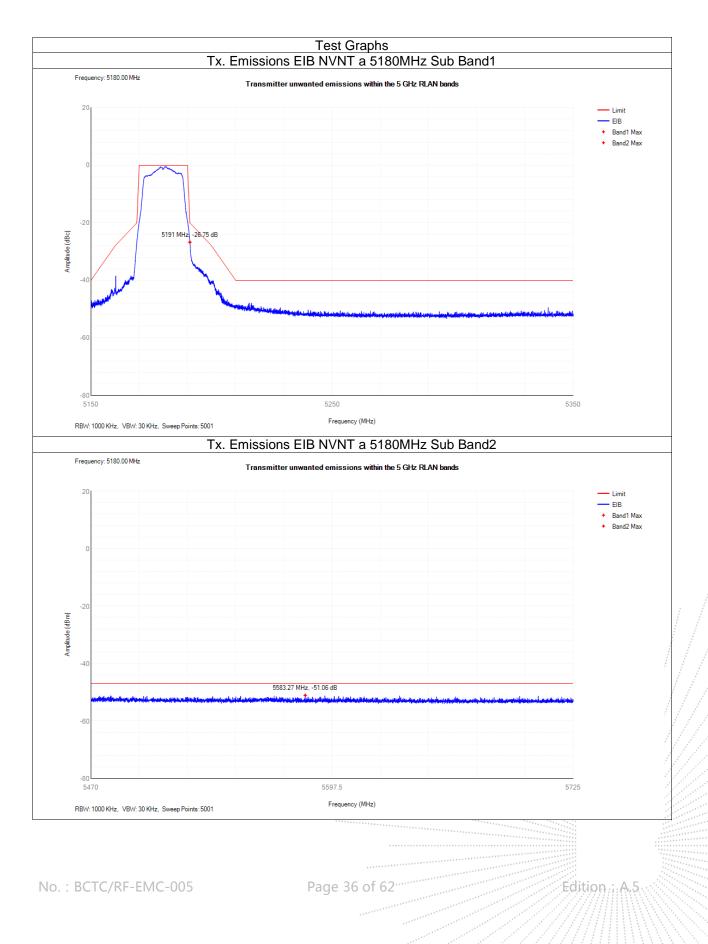
Step 1: Determination of the reference average power level.

- Spectrum analyser settings:
- Resolution bandwidth: 1 MHz
- Video bandwidth: 30 kHz
- Detector mode: Peak
- Trace mode: Video Average
- Sweep Time: Coupled
- Centre Frequency: Centre frequency of the channel being tested
- Span: 2 × Nominal Channel Bandwidth

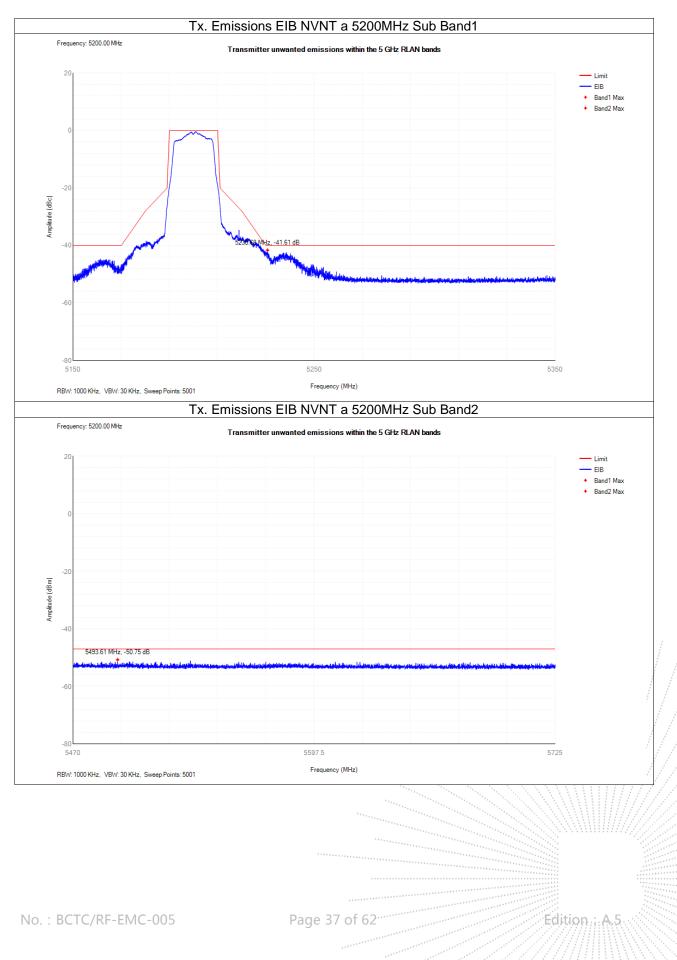
• Use the marker to find the highest average power level of the power envelope of the UUT. This level shall be used as the reference level for the relative measurements.

Step 2: Determination of the relative average power levels.

• Adjust the frequency range of the spectrum analyser to allow the measurement to be performed within the sub-bands 5 150 MHz to 5 350 MHz and 5 470 MHz to 5 725 MHz. No other parameter of the spectrum analyser should be changed.

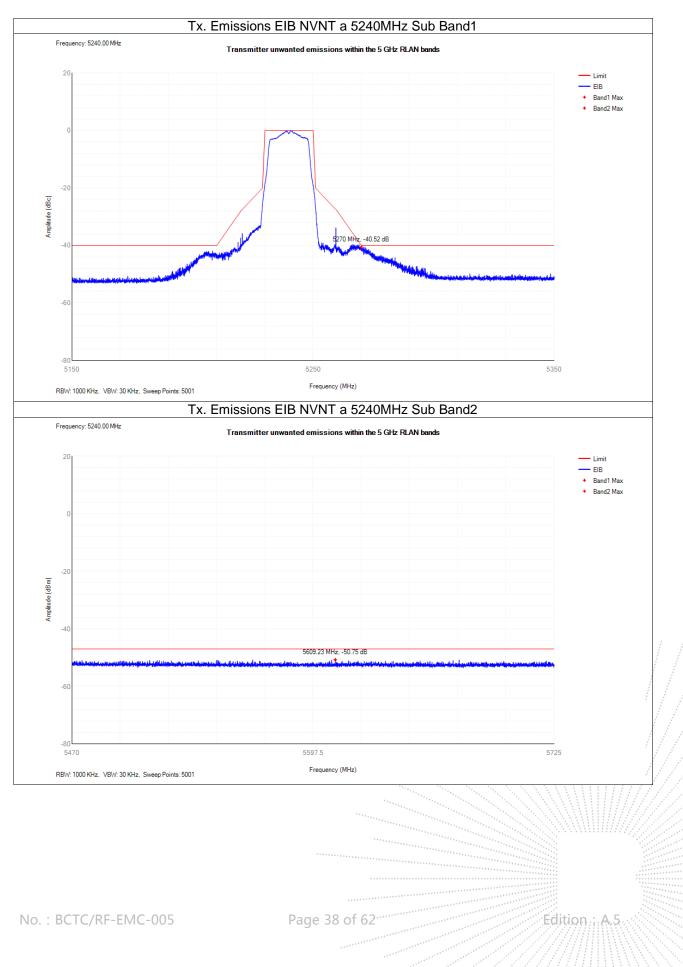

• Compare the relative power envelope of the UUT with the limits defined in clause 4.2.4.2.2.

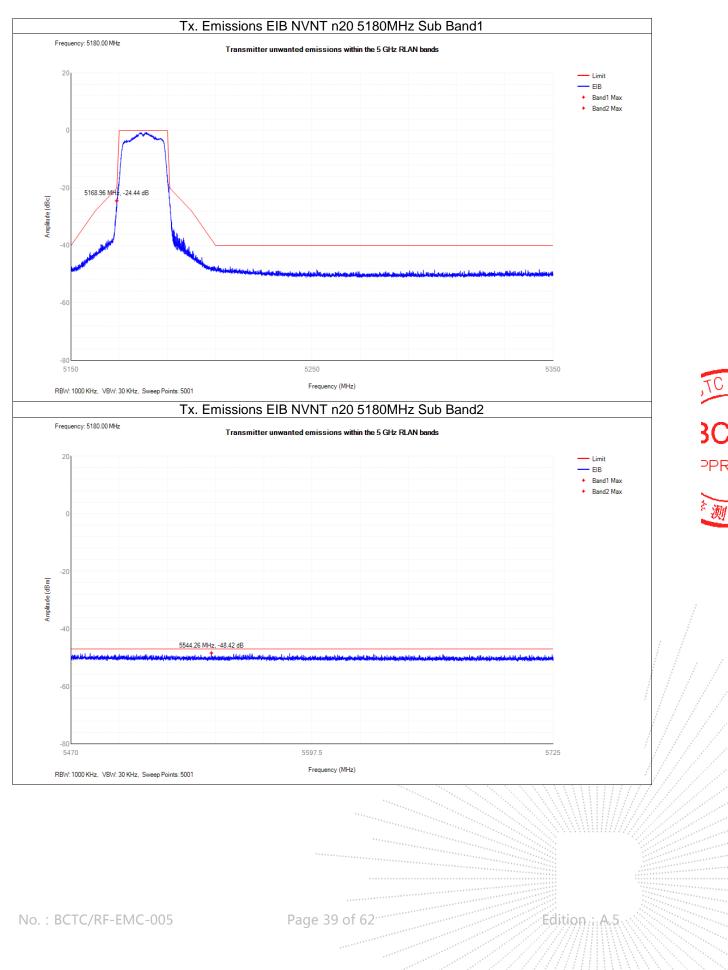
Page 35 of 62

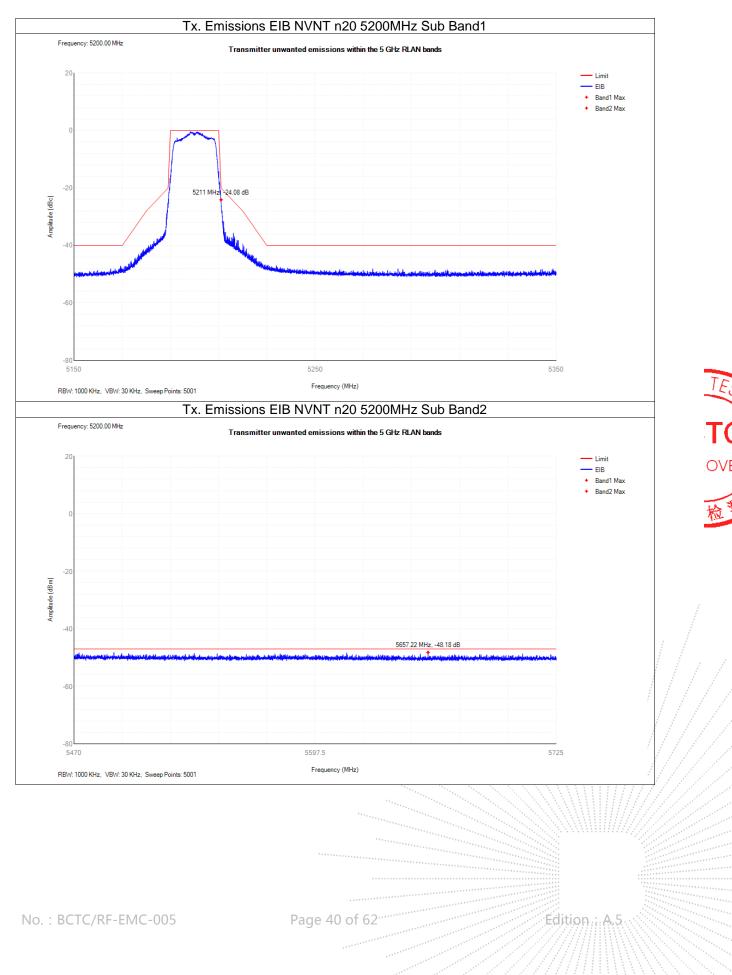


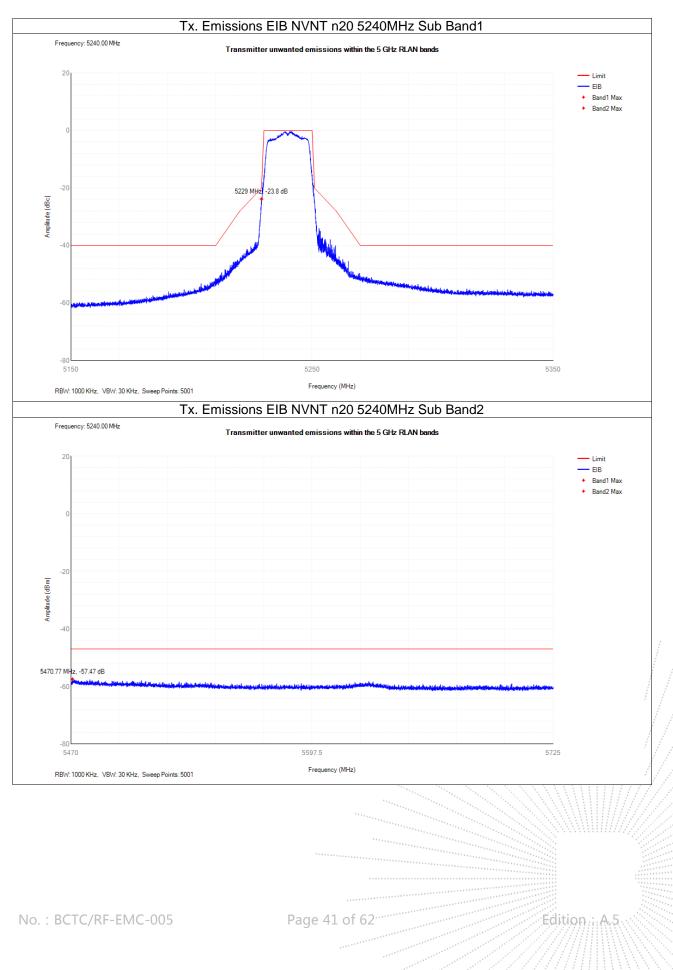
00.,17

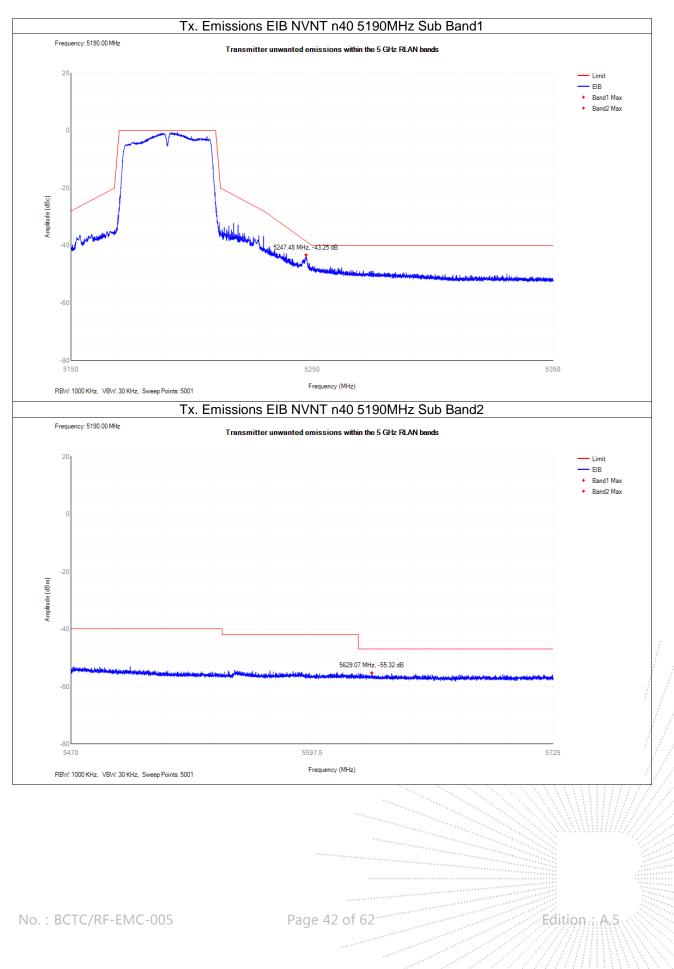
12.4 Test Result

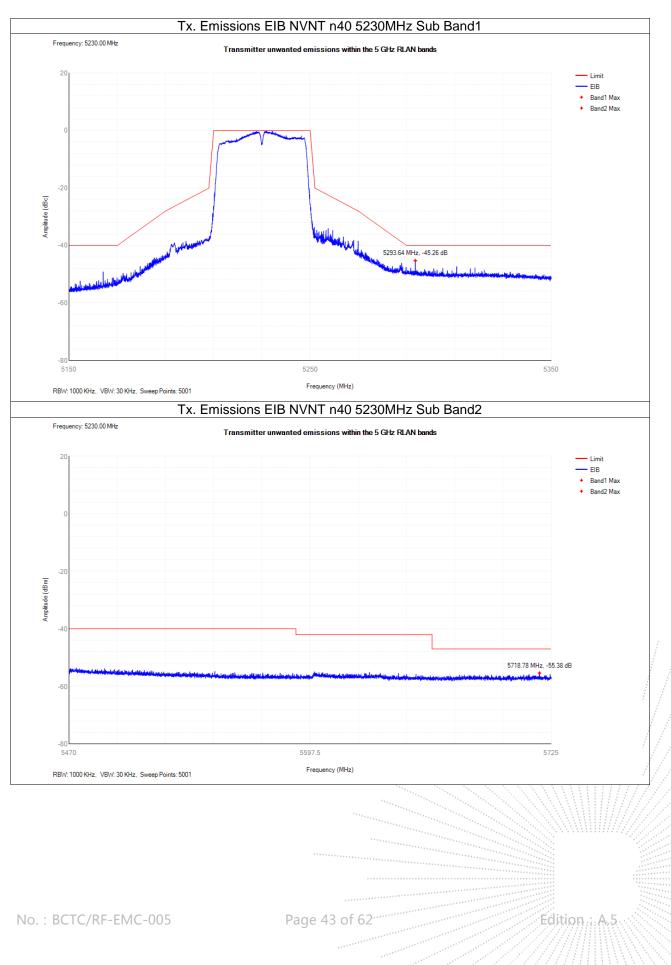


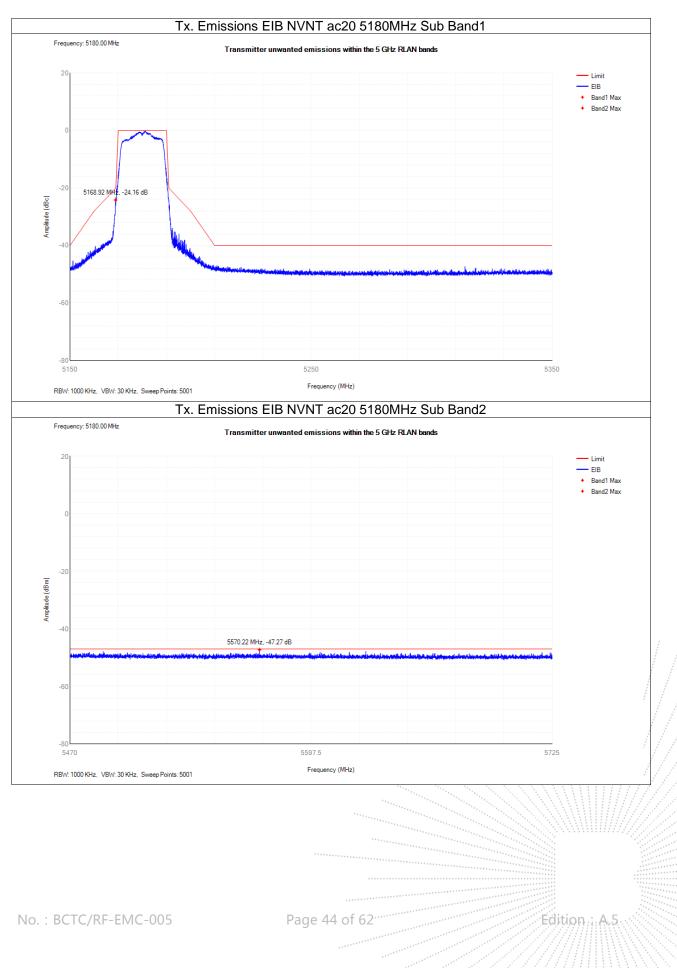


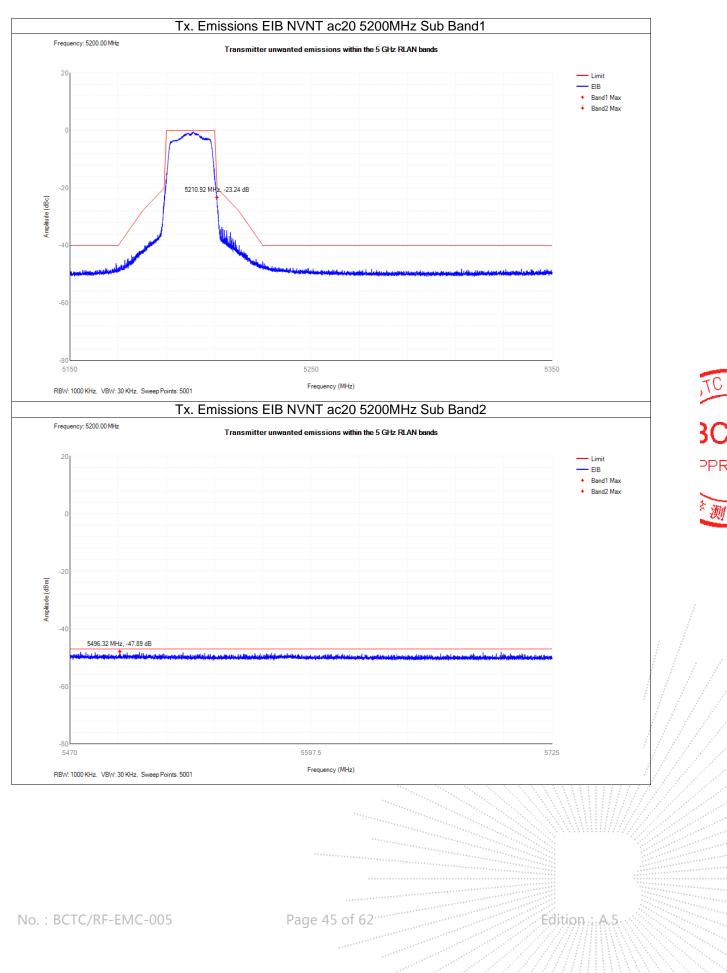

E

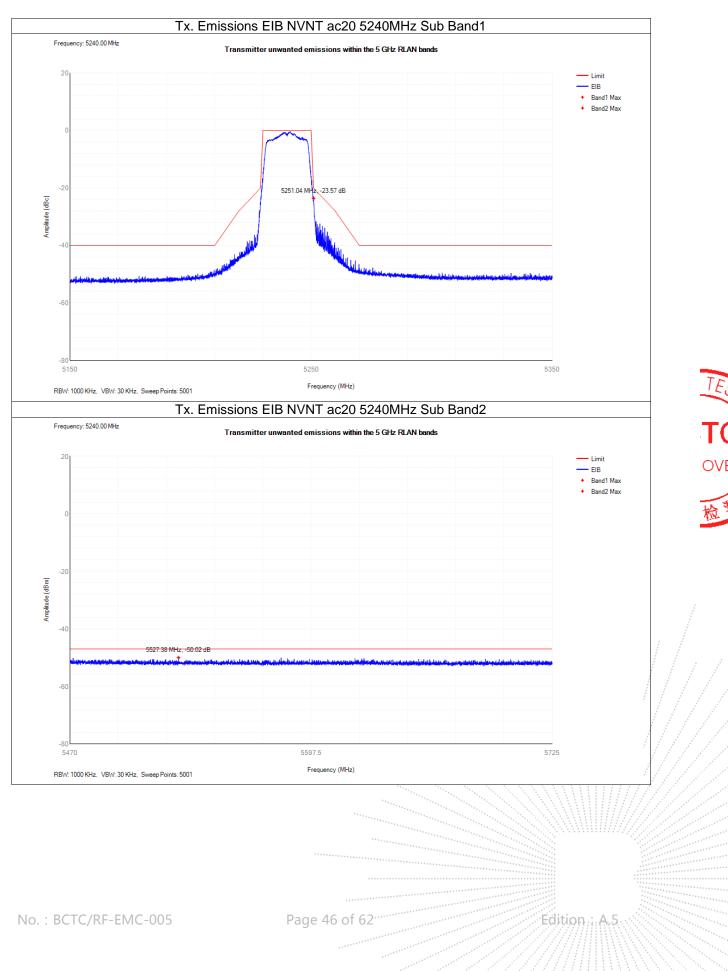


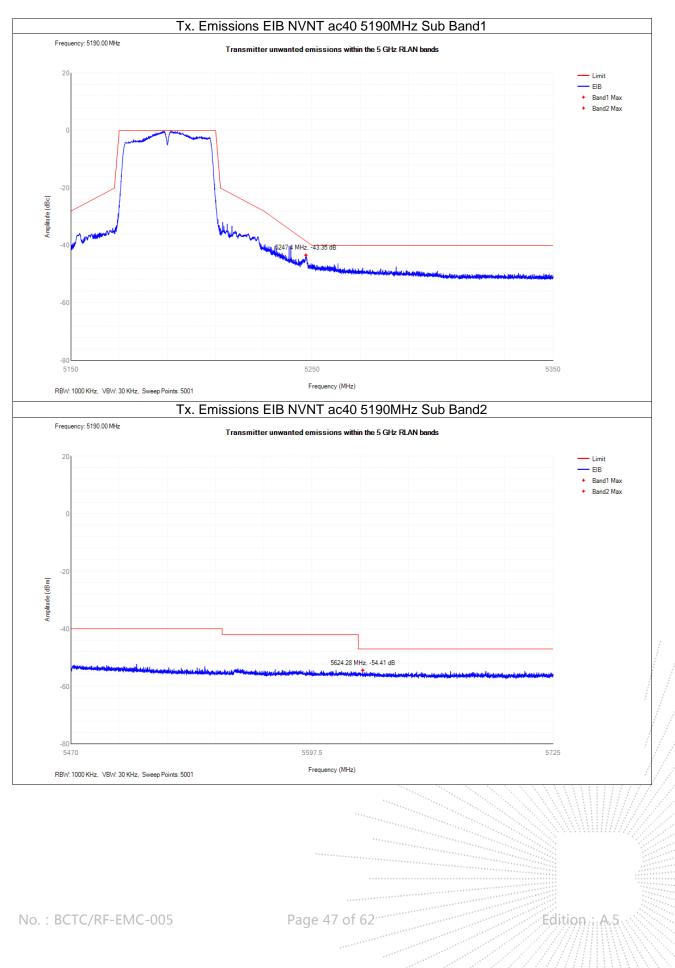


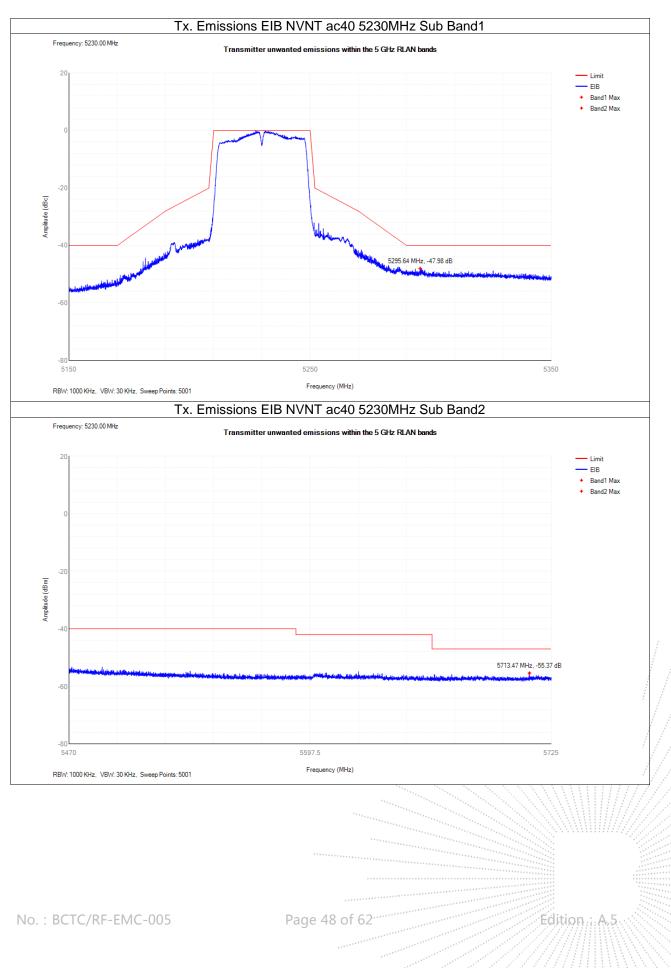


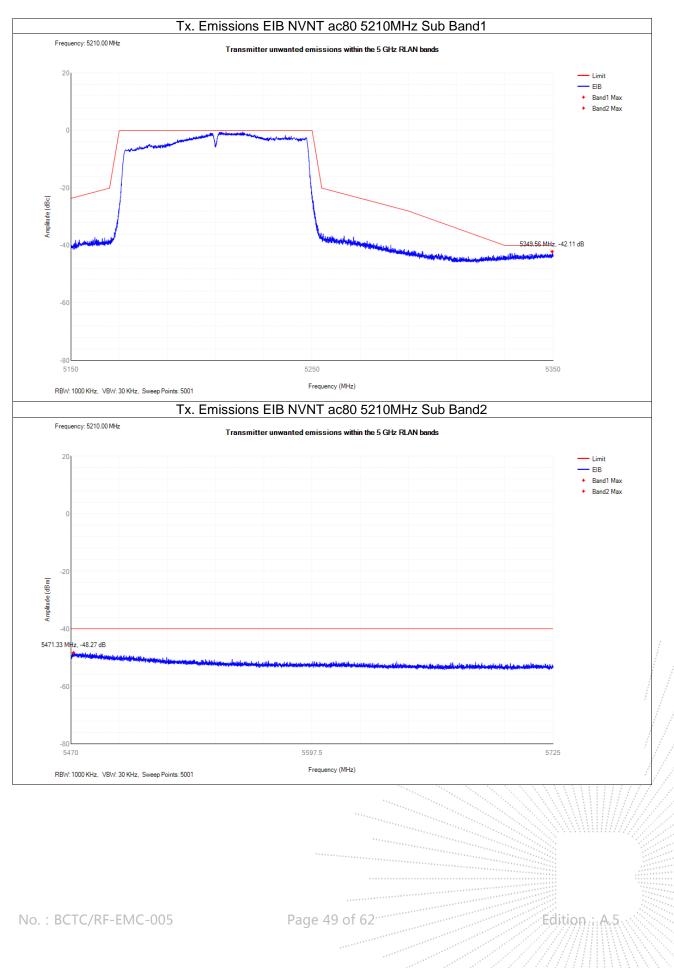


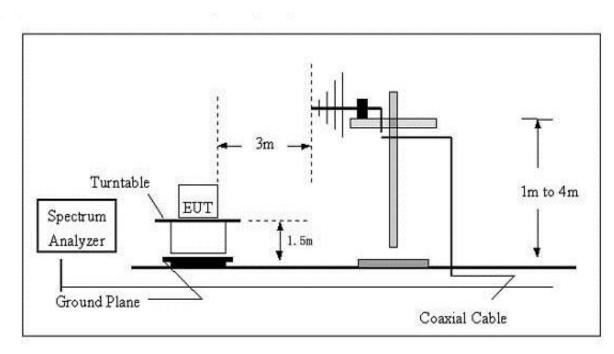


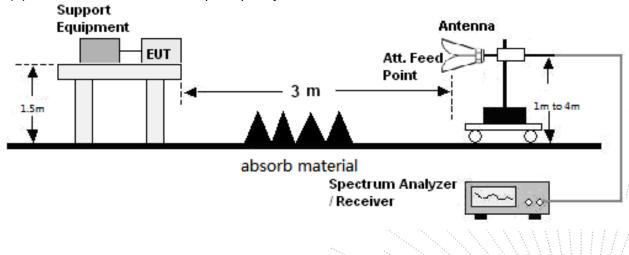

E






Ì ⊐D




13. Receiver Spurious Emissions

13.1 Block Diagram Of Test Setup

(A)Radiated Emission Test Set-Up Frequency Below 1GHz.

(B)Radiated Emission Test Set-Up Frequency Above 1GHz.

13.2 Limits

Frequency(MHz)	Limit
30-1000	-57dBm
1000-12750	-47dBm
	10000000000000000000000000000000000000

Page 50 of 62

F

13.3 Test Procedure

30MHz ~ 1GHz:

a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value. **Above 1GHz:**

a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber..

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Page 51 of 62

Edition : A.5

No.: BCTC/RF-EMC-005

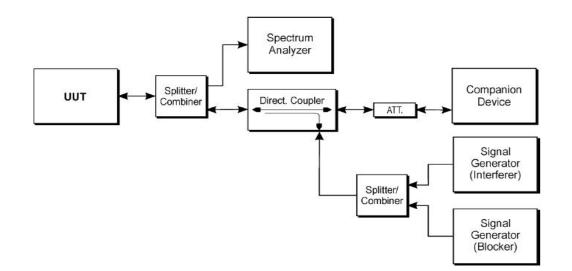
13.4 Test Results

All modes have been tested and reports show data in the worst mode Test Mode: Transmitting 802.11n20 (worst case)

	Receiver Turn		RX Antenna		Correct	Absolute	Result	
Frequency	Reading	table Angle	Height	Polar	Factor	Level	Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dBm)	(dBm)	(dBm)	(dB)
			Low chan	nel 5180	MHz			
372.25	-52.02	263	1.2	Н	-11.71	-63.73	-57.00	-6.73
372.25	-52.22	209	1.4	V	-11.71	-63.93	-57.00	-6.93
2491.03	-51.46	122	1.5	Н	-4.06	-55.52	-47.00	-8.52
2491.03	-54.13	191	1.9	V	-4.06	-58.19	-47.00	-11.19
	Mid channel 5200 MHz							
372.25	-51.75	238	1.9	Н	-11.71	-63.46	-57.00	-6.46
372.25	-52.55	235	1.7	V	-11.71	-64.26	-57.00	-7.26
2491.03	-50.65	282	1.2	Н	-4.06	-54.71	-47.00	-7.71
2491.03	-54.03	339	1.4	V	-4.06	-58.09	-47.00	-11.09
High channel 5240 MHz								
372.25	-52.55	33	1.4	Н	-11.71	-64.26	-57.00	-7.26
372.25	-52.98	311	1.1	V	-11.71	-64.69	-57.00	-7.69
2491.03	-51.95	111	1.0	Н	-4.06	-56.01	-47.00	-9.01
2491.03	-53.70	111	1.9	V	-4.06	-57.76	-47.00	-10.76

TE,

No. : BCTC/RF-EMC-005


Page 52 of 62....

Edition A.5

14. Adaptivity

Block Diagram Of Test Setup 14.1

14.2 Limit

	Operational Mode			
Requirement	Frame Based Equipment Load Based Equipment (CCA using 'energy detect')		Load Based Equipment (CCA not using any of the mechanisms referenced)	
Minimum Clear Channel Assessment (CCA) Time	20 us (see note 1)	(see note 2)	20 us (see note 1)	
Maximum Channel Occupancy (COT) Time	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
Minimum Idle Period	5% of COT	(see note 2)	NA	
Extended CCA check	NA	(see note 2)	N*CCA (see note 4)	
Short Control Signalling Transmissions	Maximum duty cycle of 5% within an observation period of 50 ms (see note 5)			
Note 1: The CCA time used by				
Note 2: LBT based spectrum s	-			
using 'energy detect', as descri -2009[10], clauses 20.			7, in IEEE 802.11n TM	
Note 3: q is selected by the ma				
Note 4: The value of N shall be				
Note 5: Adaptive equipment ma	ay or may not have Short C	control Signaling Transi	missions.	
No. : BCTC/RF-EMC-005	Page 53 of	f 62	Edition A.5	

14.3 Test Procedure

Step 1:

• The UUT shall connect to a companion device during the test. The signal generator, the spectrum analyser, the UUT, the traffic source and the companion device are connected using a set-up equivalent to the example given by figure 14 although the interference source is switched off at this point in time. The spectrum analyser is

used to monitor the transmissions of the UUT in response to the interference signal. The traffic source might be part of the UUT itself.

• The received signal level (wanted signal from the companion device) at the UUT shall be sufficient to maintain a reliable link for the duration of the test. A typical value for the received signal level which can be used in most cases is -50 dBm/MHz.

- The analyser shall be set as follows:
- RBW: ≥ Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used)
- VBW: ≥ RBW (if the analyser does not support this setting, the highest available setting shall be used)
- Detector Mode: RMS
- Centre Frequency: Equal to the centre frequency of the operating channel
- Span: 0 Hz
- Sweep time: > 2 × Channel Occupancy Time
- Trace Mode: Clear/Write
- Trigger Mode: Video or RF/IF Power

Step 2:

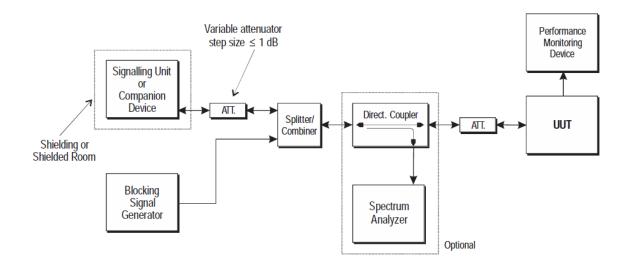
• Configure the traffic source so that it fills the UUT's buffers to a level causing the UUT to always have transmissions queued (buffer-ready-for-transmission condition) towards the companion device. Where this is not possible, the UUT shall be configured to occupy the Channel Occupancy Time of the Fixed Frame Period

to the highest extent possible.

• To avoid adverse effects on the measurement results, a unidirectional traffic source should be used. An example of such a unidirectional traffic source not triggering reverse traffic on higher layer protocols is UDP.

14.4 Test Result

No.: BCTC/RF-EMC-005


PASS

	1
	1 /
	1 . 1
	1 1 1
(a) An and the second s	
(a) A strange of the second strange of th	
Page 54 of 62 Edition : A.5	

15. Receiver Blocking

15.1 Block Diagram Of Test Setup

15.2 Limit

Wanted signal mean power	Blocking signal frequency	Blocking signal power (dBm) (see note 2)		Type of blocking
from companion device (dBm)	(MHz)	Master or Slave with radar detection (see table D.2, note 2)	Slave without radar detection (see table D.2, note 2)	signal
Pmin + 6 dB	5 100	-53	-59	Continuous Wave
Pmin + 6 dB	4 900 5 000 5 975	-47	-53	Continuous Wave
NOTE 1: P _{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum				
NOTE 2: The level	s specified are level ments, the same lev	s in front of the UUT	he absence of any blo antenna. In case of co t the antenna connect	onducted

No.: BCTC/RF-EMC-005

Page 55 of 62....

Edition : A.5

15.3 Test Procedure

Step 1:

• The UUT shall be set to the first operating frequency to be tested (see clause 5.3.2).

Step 2:

• The blocking signal generator is set to the first frequency as defined in table 9.

Step 3:

- With the blocking signal generator switched off a communication link is set up between the UUT and the associated companion device using the test setup shown in figure 18. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.2.8.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.
 - This signal level (Pmin) is increased by 6 dB resulting in a new level (Pmin + 6 dB) of the wanted signal at the UUT receiver input.

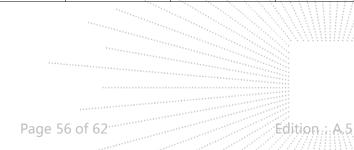
Step 4:

- The level of the blocking signal at the UUT input is set to the level provided in table 9. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.2.8.3 are met.
- If the performance criteria as specified in clause 4.2.8.3 are met, the level of the blocking signal at the UUT may be further increased (e.g. in steps of 1 dB) until the level whereby the performance criteria as specified in clause 4.2.8.3 are no longer met. The highest level at which the performance criteria are met is recorded in the test report.

Step 5:

• Repeat step 4 for each remaining combination of frequency and level as specified in table 9.

Step 6:


• Repeat step 2 to step 5 with the UUT operating at the other operating frequencies at which the blocking test has to be performed. See clause 5.3.2.

15.4 Test Result

All modes have been tested and reports show data in the worst mode

The worst mode(802.11a)

Transmitting	P _{min} (dBm)	Blocking Frequency (MHz)	Blocking Power(dB)	Measured PER(%)	Limit (%)
5180	-74	5100	-53	7.93	10
5180	-74	4900	-47	5.98	10
5180	-74	5000	-47	2.69	10
5180	-74	5975	-47	4.22	10
5240	-73	5100	-53	1.64	10
5240	-73	4900	-47	1.39	10
5240	-73	5000	-47	7.29	10
5240	-73	5975	-47	3.98	10

16. EUT Photographs

EUT Photo 1

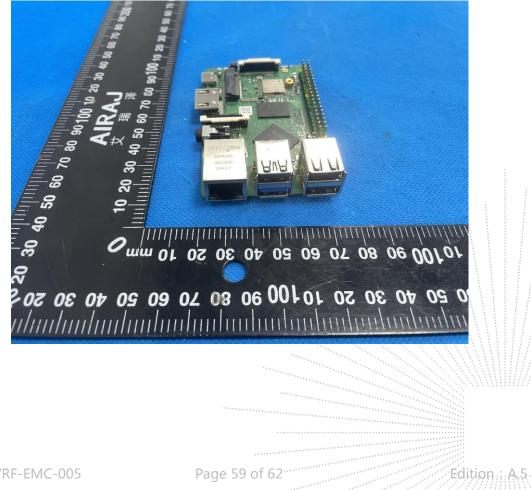
EUT Photo 2

Page 57 of 62...


Edition A.5

EUT Photo 3

EUT Photo 4


测

EUT Photo 5

EUT Photo 6

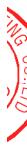
TŁ Т 0

EUT Photo 7

EUT Photo 8

No.: BCTC/RF-EMC-005

Page 60 of 62...


Edition : A.5

17. EUT Test Setup Photographs

Spurious emissions

Page 61 of 62...

Edition : A.5

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The test report without CMA mark is only used for scientific research, teaching, enterprise product development and internal quality control purposes.

8. The quality system of our laboratory is in accordance with ISO/IEC17025.

9. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL : 400-788-9558	
P.C.: 518103	
FAX:0755-33229357	
Website : http://www.chnbctc.c	zom
E-Mail : bctc@bctc-lab.com.cn	
	***** END ****
No. : BCTC/RF-EMC-005	Page 62 of 62 Edition ; A