

TEST REPORT

Report No.: BCTC2208667594E

Applicant: ROCKPI TRADING LIMITED

Product Name: RADXA ROCK 5 Model B 16GB

Model/Type reference:

ROCK 5B 16GB

Tested Date: 2022-08-17 to 2022-10-08

Issued Date: 2022-10-10

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005 Page 1 of 29 / / / Edition: A.5

Product Name: RADXA ROCK 5 Model B 16GB

Trademark: N/A

Model/Type reference: ROCK 5B 16GB

ROCK 5B 24GB, ROCK 5B 8GB, ROCK 5B 4GB, ROCK 5B 2GB

Prepared For: ROCKPI TRADING LIMITED

Address: Room 11, 27 / f, Ga wah international centre, 191 Javaroad, north point, Hong Kong

Manufacturer: ROCKPI TRADING LIMITED

Address: Room 11, 27 / f, Ga wah international centre, 191 Javaroad, north point, Hong Kong

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road,

Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2022-08-17

Sample tested Date: 2022-08-17 to 2022-10-08

Issue Date: 2022-10-10

Report No.: BCTC2208667594E

Test Standards: EN 55032:2015+A11:2020+A1:2020, EN 55035:2017+A11:2020

Test Results: PASS

Tested by:

Icey Chen

Icey Chen/ Project Handler

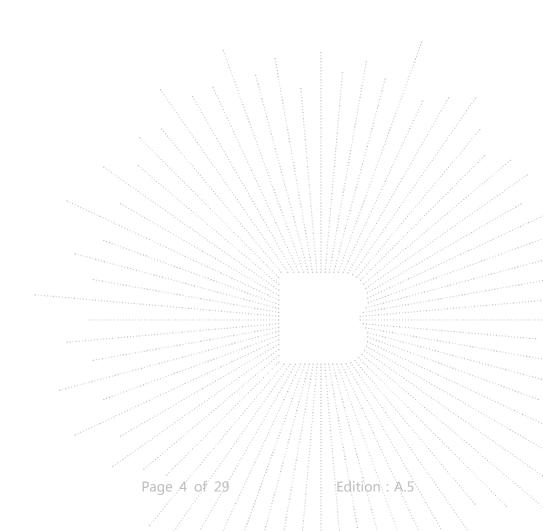
Approved by:

Zero Zhou/Reviewer

Edition: A.5

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content


Lest	Report Declaration	Page
1.	Version	4
2.	Test Summary	5
3.	Measurement Uncertainty	6
4.	Product Information And Test Setup	7
4.1	Product Information	7
4.2	Test Setup Configuration	7
4.3	Support Equipment	7
4.4	Test Mode	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	9
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	Test Result	
7.	Radiated Emissions Test	
7.1	Block Diagram Of Test Setup	
7.2	Limits	
7.3	Test Procedure	
7.4	Test Results	
8.	Immunity Test Of General The Performance Criteria	
9.	Electrostatic Discharge (ESD)	21
9.1	Test Specification	
9.2	Block Diagram of Test Setup	
9.3	Test Procedure	and the second second
9.4	Test Results	
10.	Continuous RF Electromagnetic Field Disturbances (RS)	
10.1	Test Specification	
10.2	Block Diagram of Test Setup	
10.3 10.4		
10.4	EUT Photographs	
11. 12.		
۱۷.	EUT Test Setup Photographs	20

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2208667594E	2022-10-10	Original	Valid

Test Summary 2.

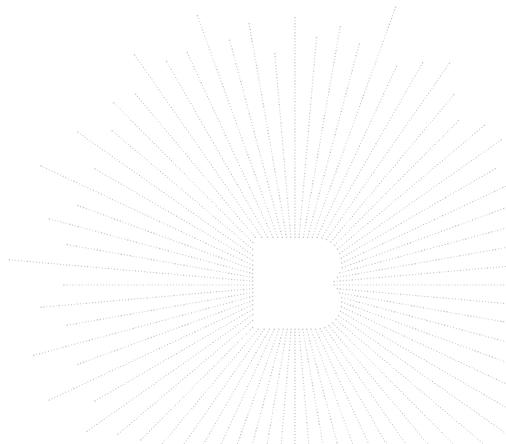
The Product has been tested according to the following specifications:

Emission					
Standard Test Item					
EN 55032	Conducted emissions from the AC mains power ports	Pass			
EN 55032	Asymmetric mode conducted emissions	Pass			
EN 55032	Conducted differential voltage emissions	N/A¹			
EN 55032	Radiated emissions	Pass			

Immunity						
Standard Test Item						
IEC 61000-4-2	Electrostatic discharge (ESD)	Pass				
IEC 61000-4-3	Continuous RF electromagnetic field disturbances(RS)	Pass				
IEC 61000-4-4 Electrical fast transients/burst (EFT)						
IEC 61000-4-5 Surges						
IEC 61000-4-6	Continuous induced RF disturbances (CS)	N/A¹				
IEC 61000-4-6	Broadband impulse noise disturbances, repetitive	N/A ²				
IEC 61000-4-6	Broadband impulse noise disturbances, isolated	N/A ²				
IEC 61000-4-8	Power frequency magnetic field (PFMF)	N/A ³				
IEC 61000-4-11	Voltage dips and interruptions (DIPS)	N/A¹				

Remark:

- 1. The EUT is a powered by USB port.
- Applicable only to CPE xDSL ports.
 The Product doesn't contain any device susceptible to magnetic fields.


No.: BCTC/RF-EMC-005 Edition: A.5

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150kHz-30MHz)	3.20
Radiated Emission(30MHz~1GHz)	4.80
Radiated Emission(1GHz~6GHz)	4.90

Page 6 of 29

Edition: A.5

4. Product Information And Test Setup

4.1 Product Information

Ratings:	DC 9V 2A 18W
Model differences:	All models are identical except for the appearance color
The highest frequency	less than 108 MHz, the measurement shall only be made up to 1 GHz.
of the internal sources	between 108 MHz and 500 MHz, the measurement shall only be made up
of the EUT is (Above 1)	to 2 GHz.
GHz:	between 500 MHz and 1 GHz, the measurement shall only be made up to
	5 GHz.
	above 1 GHz, the measurement shall be made up to 5 times the highest
	frequency or 6 GHz, whichever is less.

Cable of Product

No.	Cable Type	Quantity	Provider	Length(m)	Specification	Note
1			Applicant		Shielded	
2			встс		Unshielded	

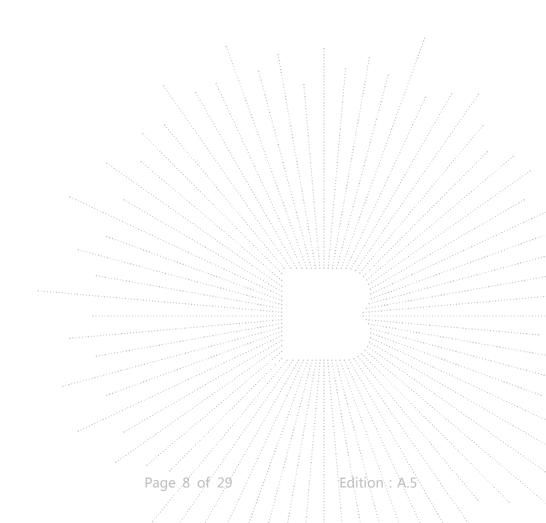
4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
1.	Adapter	UGREEN	CD122		

Notes:


- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use

No.: BCTC/RF-EMC-005 Page 7 of 29 / Edition: A.5

4.4 Test Mode

Test item	Test Mode	Test Voltage
Conducted emissions from the AC mains power ports (150KHz-30MHz) Class B	Working	AC 230V/50Hz
Asymmetric mode conducted emissions(150KHz-30MHz) Class B	Working	AC 230V/50Hz
Radiated disturbance(30MHz-6GHz) Class B	Working	AC 230V/50Hz
Electrostatic discharge (ESD) B ⊠Air Discharge: ±8Kv ⊠Contact Discharge: ±4kV ⊠HCP & VCP: ±4kV	Full Load	AC 230V/50Hz
Continuous RF electromagnetic field disturbances(RS) A 80MHz-1000MHz,1800MHz,2600MHz, 3500MHz,5000MHz, 3V/m,80%	Full Load	AC 230V/50Hz

5. Test Facility And Test Instrument Used

5.1 Test Facility

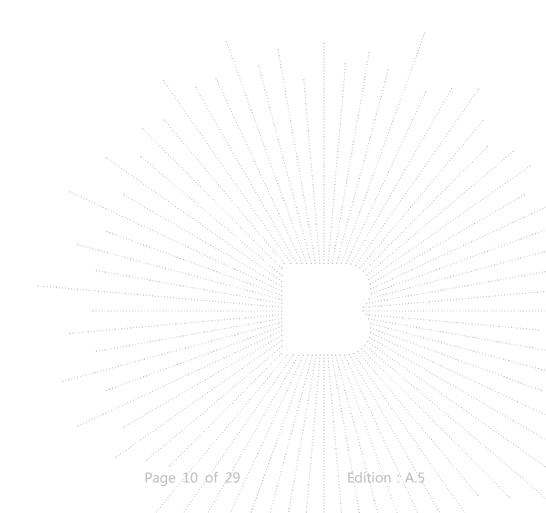
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Conducted Emissions Test								
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.								
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023			
LISN	R&S	ENV216	101375	May 24, 2022	May 23, 2023			
ISN	HPX	ISN T800	S1509001	May 24, 2022	May 23, 2023			
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\			
Attenuator	\	10dB DC-6GHz	1650	May 24, 2022	May 23, 2023			

Radiated Emissions Test (966 Chamber#01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023		
Receiver	R&S	ESRP	101154	May 24, 2022	May 23, 2023		
Receiver	R&S	ESR3	102075	May 24, 2022	May 23, 2023		
Amplifier	SKET	LAPA_01G18 G-45dB	Transferra	May 24, 2022	May 23, 2023		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 24, 2022	May 23, 2023		
TRILOG Broadband Antenna	schwarzbeck	VULB9163	942	May 26, 2022	May 25, 2023		
Horn Antenna	schwarzbeck	BBHA9120D	1541	Jun. 06. 2020	Jun. 05, 2023		
Software	Frad	EZ-EMC	FA-03A2 RE	\			

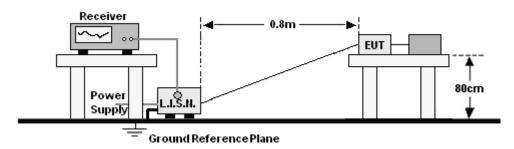
Electrostatic Discharge Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
ESD Tester	KIKUSUI	KES4201A	UH002321	May 26, 2022	May 25, 2023		

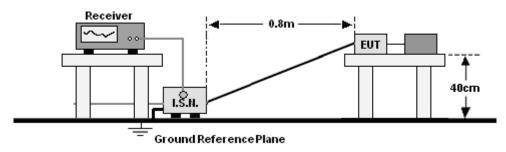

No.: BCTC/RF-EMC-005 Page 9 of 29 / / Edition: A.5

No.: BCTC/RF-EMC-005

Report No.: BCTC2208667594E

	Continuous RF Electromagnetic Field Disturbances Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.					
Power meter	Keysight	E4419	\	May 24, 2022	May 23, 2023					
Power sensor	Keysight	E9300A	\	May 24, 2022	May 23, 2023					
Power sensor	Keysight	E9300A	\	May 24, 2022	May 23, 2023					
Amplifier SKET		HAP_801000 -250W	\	May 24, 2022	May 23, 2023					
Amplifier	SKET	HAP_0103-7 5W	\	May 24, 2022	May 23, 2023					
Amplifier	SKET	HAP_0306-5 0W	\	May 24, 2022	May 23, 2023					
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	\	١	\					
Field Probe	Narda	EP-601	\	May 30, 2022	May 29, 2023					
Signal Generator	Agilent	N5181A	MY50143748	May 24, 2022	May 23, 2023					
Software	SKET	EMC-S	1.2.0.18	\	\					




6. Conducted Emissions

6.1 Block Diagram Of Test Setup

For mains ports:

For asymmetric mode ports:

6.2 Limit

Limits for Conducted emissions at the mains ports of Class B MME

Frequency range	Limits dB(μV)
(MHz)	Quasi-peak Average
0,15 to 0,50	66 to 56* 56 to 46*
0,50 to 5	56 46 ///
5 to 30	60 50

Notes: 1. *Decreasing linearly with logarithm of frequency.

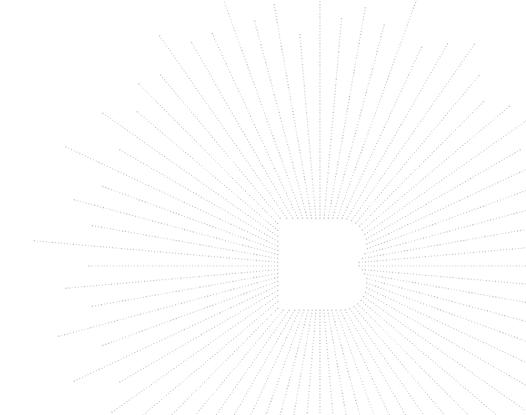
Limits for asymmetric mode conducted emissions of Class B MME

Frequency range	Voltage Lir	nits dB(μV)	Current Limits dB(µA)			
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
0,15 to 0,50	84-74	74-64	40-30	30-20		
0,50 to 30	74	64	30	20		

Notes: *Decreasing linearly with logarithm of frequency

No.: BCTC/RF-EMC-005 Page 11 of 29 / / Edition : A.S

^{2.} The lower limit shall apply at the transition frequencies.

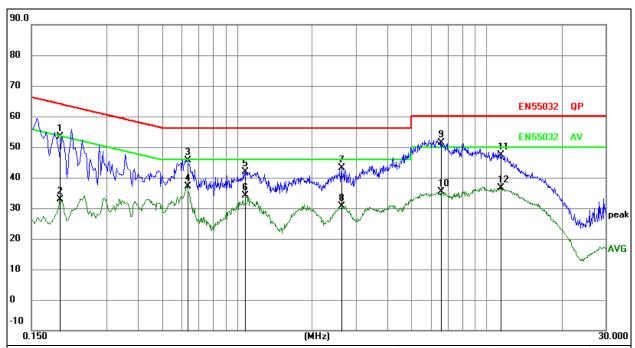

6.3 Test procedure

For mains ports:

- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

For asymmetric mode ports:

- a. The Product was placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the associated port through current probe.
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

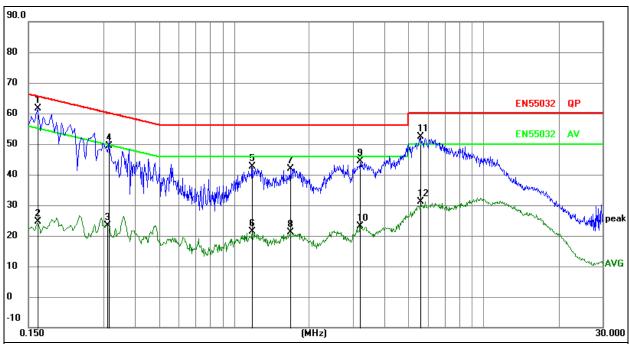

No.: BCTC/RF-EMC-005 Page 12 of 29

Edition: A.5

6.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

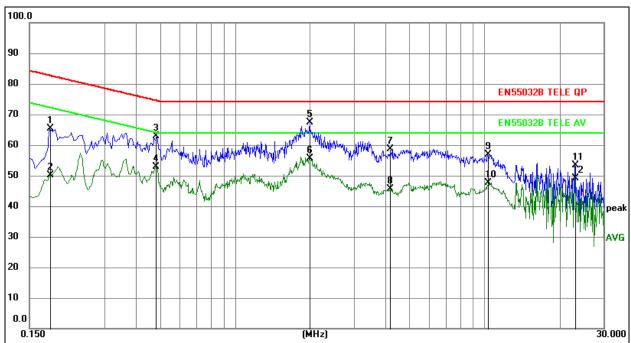
Remark:


- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	. , , .
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1949	33.71	19.79	53.50	63.83	-10.33	QP
2		0.1949	12.98	19.79	32.77	53.83	-21.06	AVG
3		0.6315	25.89	19.73	45.62	56.00	-10.38	QP
4		0.6315	17.52	19.73	37.25	46.00	-8.75	AVG
5		1.0815	21.99	19.77	41.76	56.00	-14.24	QP
6		1.0815	14.41	19.77	34.18	46.00	-11.82	AVG
7		2.6295	23.06	19.95	43.01	56.00	-12.99	QP
8		2.6295	10.70	19.95	30.65	46.00	-15.35	AVG
9	*	6.5760	31.30	20.17	51.47	60.00	-8.53	QP
10		6.5760	15.25	20.17	35.42	50.00	-14.58	AVG
11		11.3865	27.21	20.28	47.49	60.00	-12.51	QP
12		11.3865	16.23	20.28	36.51	50.00	-13.49	AVG

No.: BCTC/RF-EMC-005 Page 13 of 29 Edition: A.5

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC 230V/50Hz	Test Mode:	Working


Remark:

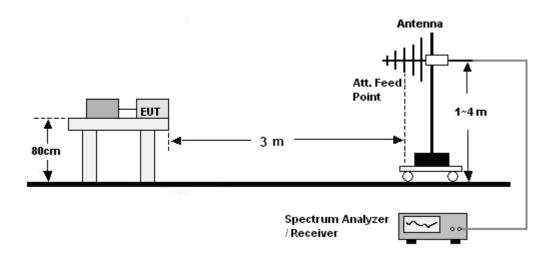
- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement Limit

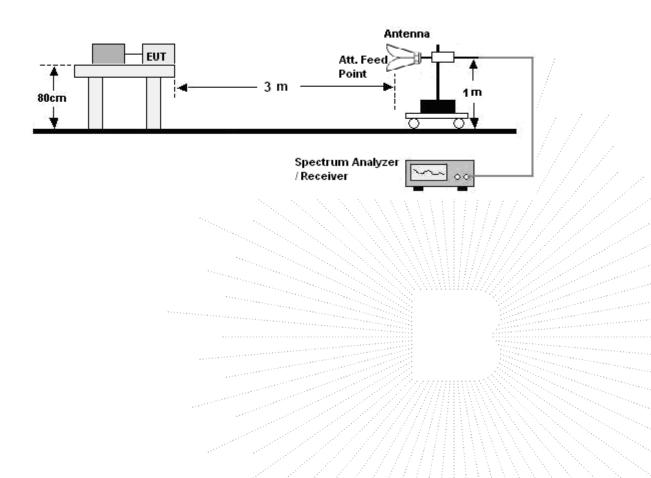
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1633	41.98	19.70	61.68	65.29	-3.61	QP
2		0.1633	4.84	19.70	24.54	55.29	-30.75	AVG
3		0.3116	3.68	19.77	23.45	49.93	-26.48	AVG
4		0.3166	29.71	19.77	49.48	59.80	-10.32	QP
5		1.1805	22.84	19.78	42.62	56.00	-13.38	QP
6		1.1805	1.52	19.78	21.30	46.00	-24.70	AVG
7		1.6802	22.14	19.84	41.98	56.00	-14.02	QP
8		1.6802	1.17	19.84	21.01	46.00	-24.99	AVG
9		3.1900	24.26	20.01	44.27	56.00	-11.73	QP
10		3.1900	3.23	20.01	23.24	46.00	-22.76	AVG
11		5.5905	32.27	20.14	52.41	60.00	-7.59	QP
12		5.5905	10.94	20.14	31.08	50.00	-18.92	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	TELE
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.
- 3. Measurement = Reading Level + Correct Factor
- 4. Over = Measurement Limit


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1815	45.89	19.49	65.38	82.42	-17.04	QP
2		0.1815	30.72	19.49	50.21	72.42	-22.21	AVG
3		0.4830	43.14	19.71	62.85	74.29	-11.44	QP
4		0.4830	33.29	19.71	53.00	64.29	-11.29	AVG
5	*	1.9815	47.59	19.88	67.47	74.00	-6.53	QP
6		1.9815	35.79	19.88	55.67	64.00	-8.33	AVG
7		4.1820	38.62	19.92	58.54	74.00	-15.46	QP
8		4.1820	25.74	19.92	45.66	64.00	-18.34	AVG
9		10.3065	36.67	20.29	56.96	74.00	-17.04	QP
10		10.3065	27.27	20.29	47.56	64.00	-16.44	AVG
11		23.1270	32.71	20.77	53.48	74.00	-20.52	QP
12		23.1270	28.28	20.77	49.05	64.00	-14.95	AVG


7. Radiated Emissions Test

7.1 Block Diagram Of Test Setup

30MHz ~ 1GHz:

Above 1GHz:

No.: BCTC/RF-EMC-005 Page 16 of

Edition A.5

7.2 Limits

Report No.: BCTC2208667594E

Limits for radiated disturbance of Class B MME

Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m)		
30-230	40		
230-1000	47		
Frequency (MHz)	limit above 1G at 3m dB(μV/m)		
	Average	peak	
1000-6000	54	74	

Note: The lower limit shall apply at the transition frequencies.

7.3 Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 0.8 m above the ground in a semi anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8 m above the ground in a full anechoic chamber..
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005 Page 17 of 29 / / / Edition A.5

7.4 Test Results

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Voltage:	AC 230V/50Hz	Test Mode:	Working

Remark:

- 1. Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. Measurement = Reading Level + Correct Factor
- 3. Over = Measurement Limit

0. 0.0	1 11100	204101110111 2			4 4 4			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	1	80.0165	42.41	-17.51	24.90	40.00	-15.10	QP
2	2	16.7828	41.04	-15.36	25.68	40.00	-14.32	QP
3	3	313.2760	42.76	-11.69	31.07	47.00	-15.93	QP
4	* 4	32.5457	44.60	-9.54	35.06	47.00	-11.94	QP
5	5	41.3725	41.86	-6.99	34.87	47.00	-12.13	QP
6	7	'58.0408	37.56	-3.04	34.52	47.00	-12.48	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Voltage :	AC 230V/50Hz	Test Mode:	Working

Remark:

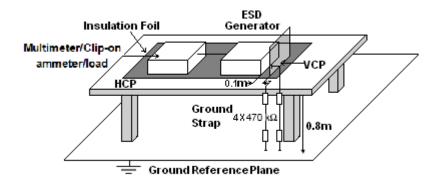
- Factor = Antenna Factor + Cable Loss Pre-amplifier.
 Measurement = Reading Level + Correct Factor
- 3. Over = Measurement Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		43.8119	42.64	-15.79	26.85	40.00	-13.15	QP
2	*	88.3421	52.19	-18.74	33.45	40.00	-6.55	QP
3	2	222.1698	43.93	-15.17	28.76	40.00	-11.24	QP
4	4	432.5457	42.82	-9.54	33.28	47.00	-13.72	QP
5	(649.6597	41.98	-4.72	37.26	47.00	-9.74	QP
6		758.0408	39.18	-3.04	36.14	47.00	-10.86	QP

8. Immunity Test Of General The Performance Criteria

Product Standard	EN 55035:2017+A11:2020 clause 5
CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

No.: BCTC/RF-EMC-005 Page 20 of 29 / / Edition A.S


9. Electrostatic Discharge (ESD)

9.1 Test Specification

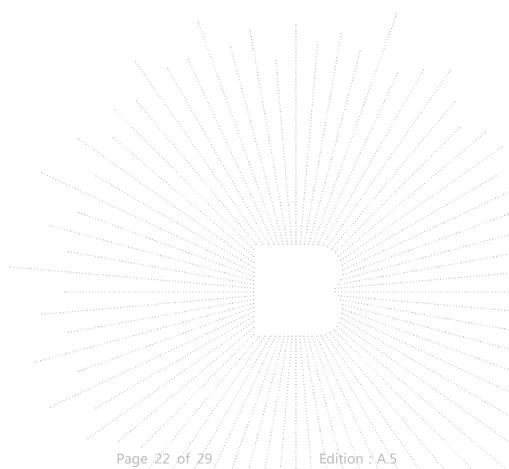
Test PortEnclosure portDischarge Impedance330 ohm / 150 pFDischarge ModeSingle Discharge

Discharge Period one second between each discharge

9.2 Block Diagram of Test Setup

9.3 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions $0.5m \times 0.5m$) was placed vertically to and 0.1 meters from the Product.


No.: BCTC/RF-EMC-005 Page 21 of 29 / / / Edition A.5

9.4 Test Results

Temperature:	26 ℃	Relative Humidity:	54%	
Pressure:	101KPa	Test Mode:	Eull Lood	
Test Voltage :	AC 230V/50Hz	rest wode.	Full Load	

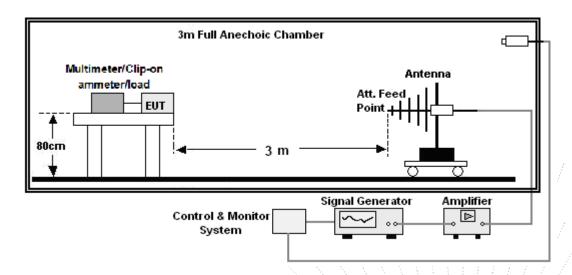
Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Required Level	Performance Criterion
	Conductive Surfaces	4	10	В	А
Contact Discharge	Indirect Discharge HCP	4	10	В	А
	Indirect Discharge VCP	4	10	В	А
Air Discharge	Slots, Apertures, and Insulating Surfaces	8	10	В	А

Edition: A.5

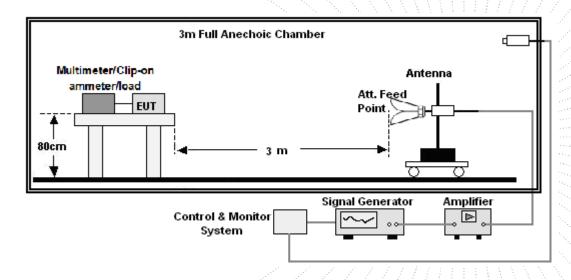
10. Continuous RF Electromagnetic Field Disturbances (RS)

10.1 Test Specification

Test Port : Enclosure port


Step Size : 1%

Modulation: 1kHz, 80% AMDwell Time: 1 second


Polarization : Horizontal & Vertical

10.2 Block Diagram of Test Setup

Below 1GHz:

Above 1GHz:

No.: BCTC/RF-EMC-005 Page 23 of 29 / /

10.3 Test Procedure

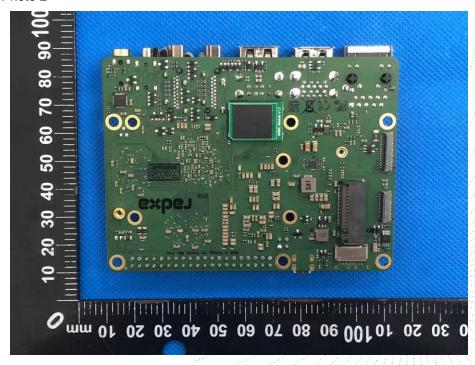
- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.
- b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1%.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond, but should not exceed 5 s at each of the frequencies during the scan.
- d. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.
- e. For Broadcast reception function: Group 2 not apply in this test.

10.4 Test Results

Temperature:	26 ℃	Relative Humidity:	54%	
Pressure:	101KPa	Toot Model	Full Load	
Test Voltage:	AC 230V/50Hz	Test Mode:	Full Load	

Frequency	Position	Field Strength (V/m)	Required Level	Performance Criterion
80 - 1000MHz,			Λ	/
1800MHz,	Front Dight			11.7
2600MHz,	Front, Right, Back, Left	3 🛝 🐧	A .	
3500MHz,				
5000MHz				HHHHH

No.: BCTC/RF-EMC-005 Page 24 of 29 / / Edition : A.S



11. EUT Photographs

EUT Photo 1

EUT Photo 2

No.: BCTC/RF-EMC-005 Page 25 of 29 / / Edition : A.S

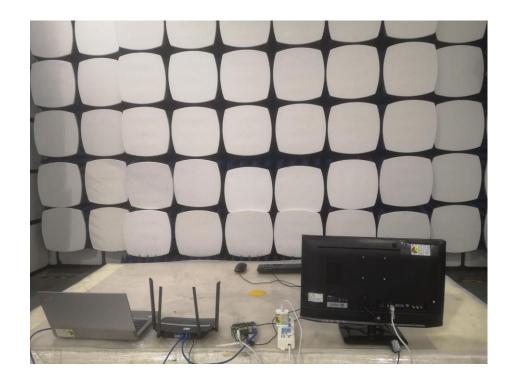
12. EUT Test Setup Photographs

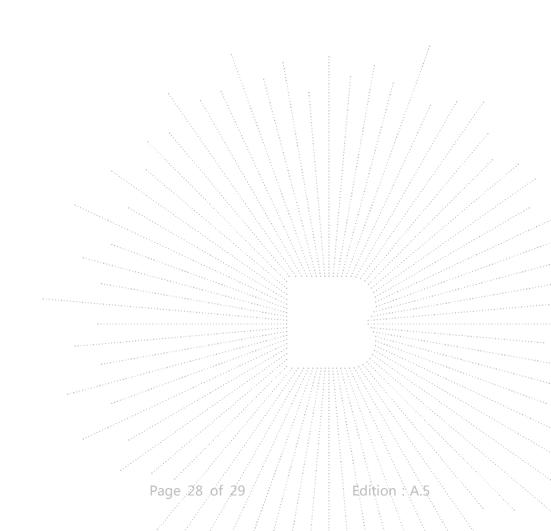
Conducted Emissions

TELE

No.: BCTC/RF-EMC-005 Page 26 of 29 / Edition: A.S

Radiated emissions


ESD



No.: BCTC/RF-EMC-005 Page 27 of 29 / Edition A.5

RS

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
- 7. The test report without CMA mark is only used for scientific research, teaching, enterprise product development and internal quality control purposes.
- 8. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 9. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

**** END ****

No.: BCTC/RF-EMC-005 Page 29 of 29 / / Edition A.5