

TEST REPORT

Product Name: ROCK Pi 4

Trademark: N/A

ROCK Pi 4 MODEL B

Model Number: ROCK Pi 4 MODEL A, ROCK Pi 4 MODEL A+, ROCK Pi 4

MODEL B+

Prepared For: ROCKPI TRADING LIMITED

Address: Room 11, 27 / f, Ga wah international centre, 191 Java road,

north point, Hong Kong, China

Manufacturer: ROCKPI TRADING LIMITED

Address: Room 11, 27 / f, Ga wah international centre, 191 Java road,

north point, Hong Kong, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

BCTC Building & 1-2F, East of B Building, Pengzhou Industrial,

Address: Fuyuan 1st Road, Qiaotou Community, Fuyong Street,

Bao'an District, Shenzhen, China

Sample Received Date: Feb. 25, 2019

Sample tested Date: Feb. 25, 2019 to Mar. 11, 2019

Issue Date: Mar. 11, 2019

Report No.: BCTC-FY190200673-6E

Test Standards ETSI EN 301 893 V2.1.1 (2017-05)

Test Results PASS

Remark: This is WIFI-5GHz band radio test report.

Compiled by: Reviewed by:

Bin Mei 2001 (au)

Bin Mei Eric Yang

Approved by

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 1 of 51

TABLE OF CONTENT

Т	est l	Report Declaration Page	ge
	1	VERSION	. 4
	2.	TEST SUMMARY	
	3.	MEASUREMENT UNCERTAINTY	
	4.	PRODUCT INFORMATION AND TEST SETUP	
	4.1 F	Product Information	7
	4.2	Test Setup Configuration	7
	4.3	Support Equipment	7
	4.4	Channel List	8
	4.5	Test Mode	
	4.6	Test Environment	
	5.	TEST FACILITY AND TEST INSTRUMENT USED	
_	5.1	Test Facility	9
	5.2	Test Instrument Used	
	6.	INFORMATION AS REQUIRED	. 10
	7.	NOMINAL CENTRE FREQUENCIES	. 12
	7.1	Block Diagram Of Test Setup	
	7.2	Limit	
	7.3	Test procedure	
	7.4	Test Result	. 13
	8.	NOMINAL CHANNEL BANDWIDTH AND OCCUPIED CHANNEL	
		IDWIDTH	
	8.1	Block Diagram Of Test Setup	
	8.2	Limit	
	8.3	Test procedure	. 17
	8.4		
	9.	RF OUTPUT POWER, TRANSMIT POWER CONTROL (TPC)	
_	9.1	Block Diagram Of Test Setup	
	9.2 9.3	Limit	. 22
	9.3	Test procedure Test Result	
	9.4 10.		
_	10.1	\ /'	27
	10.1		
	10.2		
	10.4		
		TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	
	11.1		
	11.1	1	
		Test Procedure	. 31
	11.4		
		TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	

12.1	Block Diagram Of Test Setup	33
12.2	Limit	33
12.3	Test procedure	34
12.4	Test Result	35
13.	RECEIVER SPURIOUS EMISSIONS	42
13.1		
13.2	Limits	42
	Test Procedure	
13.4	Test Results	44
14.	ADAPTIVITY	45
14.1		
14.2	Limit	45
14.3	Test procedure	46
14.4	Test Result	46
15.	RECEIVER BLOCKING	47
11.1	Block Diagram Of Test Setup	47
11.2	Limit	47
11.3	Test procedure	47
11.4	Test Result	48
16.	EUT PHOTOGRAPHS	49
17.	EUT TEST SETUP PHOTOGRAPHS	51

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC-FY190200673-6E	Mar. 11, 2019	Original	Valid
-/0	-/0	-/	

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 4 of 51

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results		
1	Nominal Centre frequencies	4.2.1	PASS		
2	Nominal Channel Bandwidth and Occupied Channel Bandwidth	4.2.2	PASS		
3	RF output power, Transmit Power Control (TPC) and Power Density	4.2.3	PASS		
4	Transmitter unwanted emissions	4.2.4	PASS		
5	Receiver spurious emissions	4.2.5	PASS		
6	Dynamic Frequency Selection (DFS)	4.2.6	N/A		
7	Adaptivity (Channel Access Mechanism)	4.2.7	PASS		
8	Receiver Blocking	4.2.8	PASS		
9	User Access Restrictions	4.2.9	PASS		
4.3					

Note: N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

Remark:

N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 5 of 51

U=±5%

14

Time

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

ge factor	r of k=2.	-/0
No.	Item	Uncertainty
1	Occupancy bandwidth	U=±54.3Hz
2	Adjacent channel power	U=±1.3dB
3	Conducted Adjacent channel power	U=±1.38dB
4	Conducted output power Above 1G	U=±1.0dB
5	Conducted output power below 1G	U=±0.9dB
6	Power Spectral Density , Conduction	U=±1.0dB
7	Conduction spurious emissions	U=±2.8dB
8	Out of band emission	U=±54Hz
9	3m camber Radiated spurious emission(30MHz-1GHz)	U=±4.3dB
10	3m chamber Radiated spurious emission(1GHz-18GHz)	U=±4.5dB
11	humidity uncertainty	U=±5.3%
12	Temperature uncertainty	U=±0.59℃
13	Supply volyages	U=±3%

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 6 of 51

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): ROCK Pi 4 MODEL B

ROCK Pi 4 MODEL A, ROCK Pi 4 MODEL A+, ROCK Pi 4 MODEL B+

Model Description: The product is different for model number and outlook color

Wi-Fi Specification: IEEE 802.11a/b/g/n/ac
Bluetooth Version: Bluetooth v4.0 with BLE

Hardware Version: N/A

Software Version: N/A

Operation Frequency: WiFi: IEEE 802.11b/g/n HT20: 2412-2472MHz

IEEE 802.11a/n/ac HT20/HT40/HT80 5180-5240MHz

Bluetooth: 2402-2480MHz

Max. RF output power: WiFi (2.4G): 9.04dBm

WiFi (5.2G): 8.53dBm Bluetooth: 6.97dBm

Type of Modulation: WiFi: DSSS, OFDM

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Antenna installation: WiFi/Bluetooth: External antenna with RP-SMA connector

Antenna Gain: WiFi : 1dBi

Bluetooth: 1dBi

Ratings: DC5V From Adaptor

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.						

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 7 of 51

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
36	5180	38	5190	40	5200	42	5210
44	5220	46	5230	48			. /

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting(802.11a HT20)	5180MHz	5200	5240
Transmitting(802.11n HT20)	5180MHz	5200	5240
Transmitting(802.11n HT40)	5190Mhz		5230
Transmitting(802.11ac HT20)	5180MHz	5200	5240
Transmitting(802.11ac HT40)	5190Mhz	/	5230
Transmitting(802.11ac HT80)	/	5210	/
Receiving(802.11a HT20)	5180MHz	5200	5240
Receiving(802.11n HT20)	5180MHz	5200	5240
Receiving(802.11ac HT80)	1	5210	

4.6 Test Environment

1. Normal Test Conditions:

Humidity(%):	57
Atmospheric Pressure(hPa):	1010
Temperature(°C):	23
Test Voltage(DC):	230V

2.Extreme Test Conditions:

For tests at extreme temperatures, measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.

For tests at extreme voltages, measurements shall be made over the extremes of the power source voltage range as declared by the manufacturer.

Test Conditions	LT	HT
Temperature (°C)	-10	40

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 8 of 51

Report No.: BCTC-FY190200673-6E

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

2		A. 1		73		()
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Cal.Date	Cal.Due date
1)	966 chamber	ChengYu	966 Room	966	Mar. 03, 2018	Mar. 02, 2023
2	Spectrum Analyzer	Aglient	E4407B	MY45109572	Jun. 20, 2018	Jun. 19, 2019
3	Amplifier	Schwarzbeck	BBV9718	9718-309	Jun. 20, 2018	Jun.19, 2019
4	Amplifier	Schwarzbeck	BBV9744	9744-0037	Jun. 20, 2018	Jun.19, 2019
5	TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163-9 42	Jun. 23, 2018	Jun.22, 2019
6	Horn Antenna	SCHWARZBE CK	BBHA912 0D	1201	Jun. 23, 2018	Jun.22, 2021
7	band rejection filter	ZBSF	ZBSF-C2 441.5	1706003605	Aug. 15, 2018	Aug. 14, 2019
8	Signal Generator	Keysight	N5181A	MY50143748	Jun. 20, 2018	Jun.19, 2019
9	Communication test set	R&S	CMU200	119435	Aug. 06, 2018	Aug. 05, 2019
10	Communication test set	Agilent	N4010A	MY49081107	Aug. 06, 2018	Aug. 05, 2019
11	Spectrum Analyzer	Keysight	N9020A	MY49100060	Jul. 11, 2018	Jul. 10, 2019
12	Signal Generator	Keysight	N5182B	MY56200519	Jun. 20, 2018	Jun.19, 2019
13	Power Sensor	Keysight	E9 300A	/	Apr. 15, 2018	Apr. 14, 2019
14	Horn antenna	SCHWARZBE CK	BBHA917 0	822	Jul. 25, 2018	Jul. 24, 2019
15	Preamplifier	MITEQ	TTA1840- 35-HG	2034381	Jul. 25, 2018	Jul. 24, 2019
16	Software	Frad	EZ-EMC	FA-03A2 RE	\	\
17	Software	Keysight	Keysight. ETSLTest system	1.02.05	0	\

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 9 of 51

INFORMATION AS REQUIRED

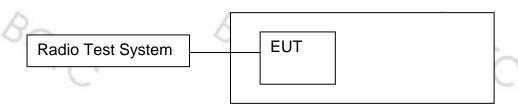
ETSI EN 301 893 V2.1.1 Annex G a) The Nominal Channel Bandwidth(s): Refer to section 4.4 channel list. b) For Load Based Equipment that supports multi-channel operation: N/A c) The different transmit operating modes (see clause 5.3.3.2) (tick all that apply): ⊠Operating mode 1: Single Antenna Equipment □ a) Equipment with only 1 antenna d) In case of Smart Antenna Systems or multiple antenna systems: The number of Receive chains: The number of Transmit chains: Equal power distribution among the transmit chains:

 □Yes □No • In case of beamforming, the maximum (additional) beamforming gain: dB NOTE: Beamforming gain does not include the basic gain of a single antenna (assembly). e) TPC feature available: □Yes ⊠No f) For equipment with TPC range: The lowest and highest power level (or lowest and highest e.i.r.p. level in case of integrated antenna equipment), intended antenna assemblies and corresponding operating frequency range for the TPC range (or for each of the TPC ranges if more than one is implemented). g) For equipment without a TPC range: Power Setting 1: Max. h) The DFS related operating mode(s) of the equipment: i) User access restrictions (please check box below to confirm): i) For equipment with Off-Channel CAC functionality: k) The equipment can operate in ad-hoc mode: I) Operating Frequency Range(s): Refer to section 4.1. m) The extreme operating temperature and supply voltage range that apply to the equipment: Refer to section 4.6 n) The test sequence/test software used (see also ETSI EN 301 893 (V2.1.1), clause 5.3.1.2): Provide by manufacturer. o) Type of Equipment: ⊠Stand-alone

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 10 of 51

Combined Equipment (Equipment where the radio part is fully integrated within

another type of equipment)


Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190200673-6E

☐Plug-in radio device (Equipment intended for a variety of host systems)
Other
p) Adaptivity (Channel Access Mechanism):
⊠Frame Based Equipment
☐Load Based Equipment
q) With regards to Adaptivity for Frame Based Equipment
☐The Frame Based Equipment operates as an Responding Device
☐The Frame Based Equipment can operate as an Initiating Device and as a
Responding Device
r) With regards to Adaptivity for Load Based Equipment
N/A
s) The equipment supports a geo-location capability as defined in clause 4.2.10 of
ETSI EN 301 893 V2.1.1:
□Yes ⊠No
t) The minimum performance criteria (see ETSI EN 301 893 V2.1.1, clause 4.2.8.3)
that corresponds to the intended use of the equipment:
The minimum performance criterion is a PER of less than or equal to 10 %.
u) The theoretical maximum radio performance of the equipment (e.g. maximum
throughput) (see ETSI EN 301 893 V2.1.1, clause 5.4.9.3.1):
N/A

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 11 of 51

7. NOMINAL CENTRE FREQUENCIES

7.1 Block Diagram Of Test Setup

7.2 Limit

The Nominal Centre Frequencies (fc) for a Nominal Channel Bandwidth of 20 MHz are defined by equation (1). See also figure 3.

fc = 5 160 + (g × 20) MHz, where 0 \leq g \leq 9 or 16 \leq g \leq 27 and where g shall be an integer.

A maximum offset of the Nominal Centre Frequency of ±200 kHz is permitted. Where the manufacturer decides to make use of this frequency offset, the manufacturer shall declare the actual centre frequencies used by the equipment.

See clause 5.4.1, item a).

The actual centre frequency for any given channel shall be maintained within the range fc ± 20 ppm.

Equipment may have simultaneous transmissions on more than one Operating Channel with a Nominal Channel Bandwidth of 20 MHz.

7.3 Test procedure

This method is an alternative to the above method in case the UUT cannot be operated in an un-modulated mode.

The UUT shall be connected to spectrum analyser.

Max Hold shall be selected and the centre frequency adjusted to that of the UUT.

The peak value of the power envelope shall be measured and noted. The span shall be reduced and the marker moved in a positive frequency increment until the upper, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f1.

The marker shall then be moved in a negative frequency increment until the lower, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f2.

The centre frequency is calculated as (f1 + f2) / 2.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 12 of 51

7.4 Test Result

	Test conditions		Frequency Measured (MHz)			
Modulation			Low channel	Middle channel	High channel	
00			5180.0000	5200.0000	5240.0000	
	Normal		5180.1101	5200.1460	5240.1702	
802.11a	Extreme	LTLV	5180.1100	5200.1457	5240.1701	
		LTHV	5180.1093	5200.1451	5240.1694	
HT20		HTLV	5180.1096	5200.1453	5240.1698	
		HTHV	5180.1098	5200.1456	5240.1700	
Max.Error(ppm)			16.30	16.45	16.24	
Limit (ppm)			±20	±20	±20	

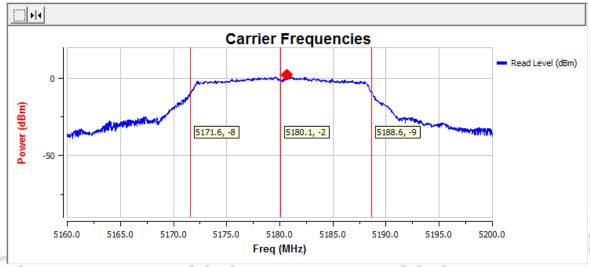
	1		_			
			Frequency Measured (MHz)			
NA. Lieta	Toot oor	ditiona	Low channel	Middle	∐iah ahannal	
Modulation	Test cor	เนเนอกร	Low channel	channel	High channel	
			5180.0000	5200.0000	5240.0000	
0_	Normal		5180.1619	5200.1321	5240.0801	
802.11n	Extreme	LTLV	5180.1616	5200.1318	5240.0800	
		LTHV	5180.1611	5200.1308	5240.0791	
HT20		HTLV	5180.1613	5200.1311	5240.0793	
		HTHV	5180.1614	5200.1315	5240.0796	
Max.Error(ppm)			15.23	15.43	15.77	
Limit (ppm)			±20	±20	±20	

	Modulation Test conditions		Frequency Measured (MHz)				(MHz)
Modulation			Low channel	Middle channel	High channel		
			5190.0000	/	5230.0000		
	Norn	nal	5190.1760	D 1	5230.1318		
802.11n	Extreme	LTLV	5190.1752		5230.1311		
		LTHV	5190.1753	-15	5230.1315		
HT40		HTLV	5190.1753	/	5230.1315		
		VHTH	5190.1756	/	5230.1316		
Max.Error(ppm)			16.57	/	16.77		
Li	mit (ppm)		±20	/	±20		

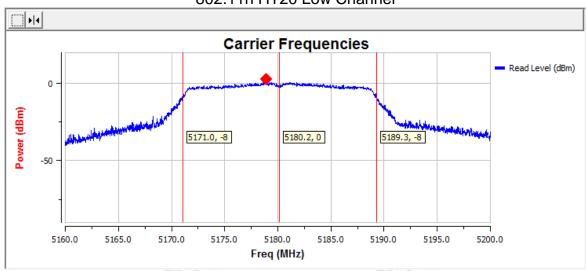
EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 13 of 51

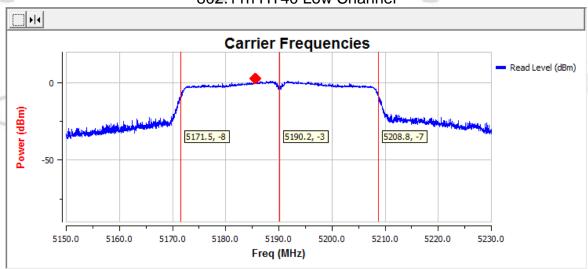
Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190200673-6E

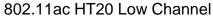
-	Test conditions		Frequency Measured (MHz)		
Madulation			Low channel	Middle	High channel
Modulation	1681 601	iditions	LOW CHAINTEI	channel	riigii channei
			5180.0000	5200.0000	5240.0000
	Normal		5180.1118	5200.2480	5240.1860
802.11ac	Extreme	LTLV	5180.1116	5200.2471	5240.1850
		LTHV	5180.1111	5200.2474	5240.1852
HT20		HTLV	5180.1113	5200.2477	5240.1854
		HTHV	5180.1115	5200.2476	5240.1857
Max.Error(ppm)			18.54	18.56	17.28
Limit (ppm)			±20	±20	±20

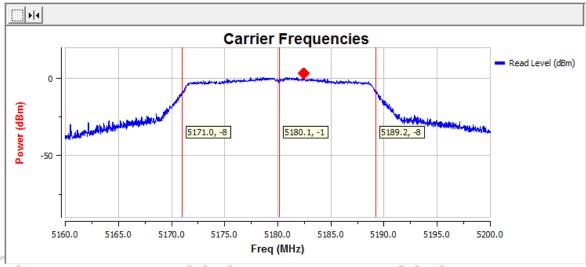

~	6		Frequency Measured (MHz)			
Modulation	Modulation Test conditions		Low channel	Middle channel	High channel	
-			5190.0000		5230.0000	
	Normal		5190.2041	/	5230.2200	
802.11ac	Extreme	LTLV	5190.2038	/	5230.2196	
		LTHV	5190.2035	/	5230.2193	
HT40		HTLV	5190.2033	/	5230.2191	
Ra		HTHV	5190.2030	1	5230.2194	
Max.Error(ppm)			18.21	/	18.56	
Limit (ppm)			±20	/	±20	

	Test conditions		Freq	uency Measured	(MHz)
Modulation			Low channel	Middle	High channel
Modulation				channel	angur samura
	80		/	5210.0000	1 37
~_	Normal		/	5210.0640	1
802.11ac	Extreme	1	/	5210.0635	/
		1	/	5210.0632	/
HT80		/	/	5210.0637	/
		/	/	5210.0633	/
Max.Error(ppm)			/	12.28	/ /
Limit (ppm)			/	±20	/ ~(

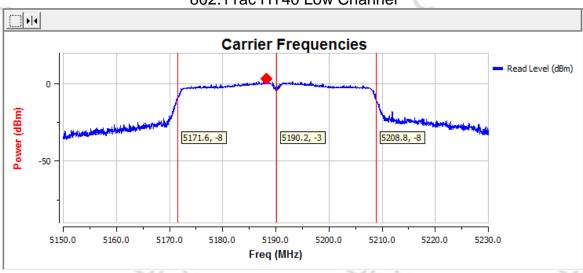

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 14 of 51


Test Plots 802.11a HT20 Low Channel

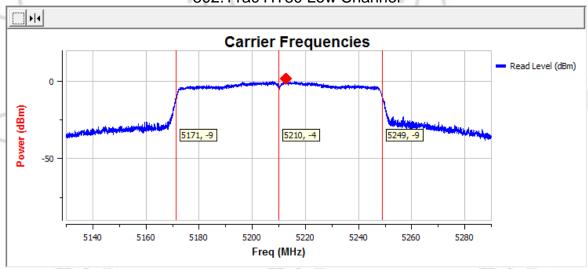

802.11n HT20 Low Channel



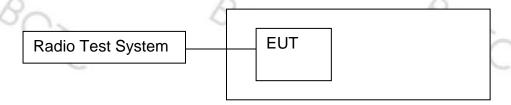
802.11n HT40 Low Channel



EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 15 of 51



802.11ac HT40 Low Channel


802.11ac HT80 Low Channel

8. NOMINAL CHANNEL BANDWIDTH AND OCCUPIED CHANNEL BANDWIDTH

8.1 Block Diagram Of Test Setup

8.2 Limit

The Nominal Channel Bandwidth for a single Operating Channel shall be 20 MHz. Alternatively, equipment may implement a lower Nominal Channel Bandwidth with a minimum of 5 MHz, providing they still comply with the Nominal Centre Frequencies defined in clause 4.2.1 (20 MHz raster).

The Occupied Channel Bandwidth shall be between 80 % and 100 % of the Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement.

The Occupied Channel Bandwidth might change with time/payload.

8.3 Test procedure

Step 1:

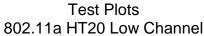
- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: The centre frequency of the channel under test
- Resolution Bandwidth: 100 kHz
- Video Bandwidth: 300 kHz
- Frequency Span: 2 x Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Sweep time: > 1 s; for larger Nominal Bandwidths, the sweep time may be increased until a value where the sweep time has no impact on the RMS value of the signal
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait for the trace to stabilize.

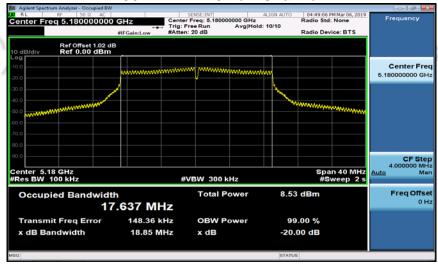
EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 17 of 51

Step 3:

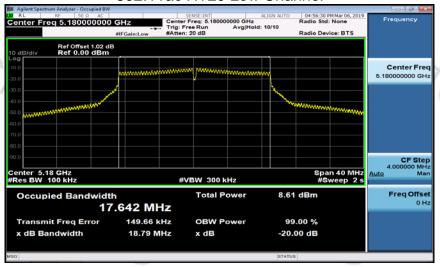

- Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.
- Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

The measurement described in step 1 to step 3 above shall be repeated in case of simultaneous transmissions in non-adjacent channels.

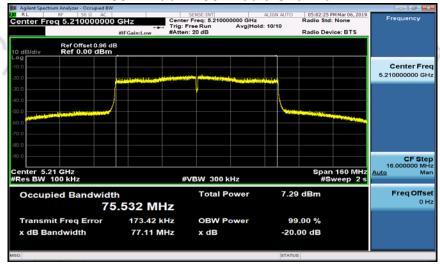
8.4 Test Result

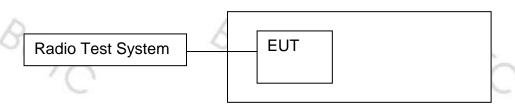

	Test	OCCUPIED CHANNEL BANDWIDTH (MHz)			
Modulation	conditions	Low Channel	Middle Channel	High Channel	
802.11a HT20	Normal	16.424	16.435	16.425	
802.11n HT20	Normal	17.637	17.641	17.634	
802.11n HT40	Normal	36.182	/	36.215	
802.11ac HT20	Normal	17.642	17.640	17.636	
802.11ac HT40	Normal	36.187	/	36.207	
802.11ac HT80	Normal	/	75.532	/	

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 18 of 51


802.11n HT20 Low Channel

802.11n HT40 Low Channel


802.11ac HT20 Low Channel


802.11ac HT80 Middle Channel

9. RF OUTPUT POWER, TRANSMIT POWER CONTROL (TPC)

9.1 Block Diagram Of Test Setup

9.2 Limit

Frequency Mean e.i.r.p. I		п	Mean e.i.r.p. (dBm/	•
(MHz)	with TPC	without TPC	with TPC	without TPC
5 150 to 5 350	23	20/23 (see note 1)	10	7/10 (see note 2)
5 470 to 5 725	30 (see note 3)	27 (see note 3)	17 (see note 3)	14 (see note 3)

- NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm
- NOTE 2: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.
- NOTE 3: Slave devices without a Radar Interference Detection function shall comply with the limits for the frequency range 5 250 MHz to 5 350 MHz.

9.3 Test procedure

This option is for equipment that operates only in one sub-band or that is capable for operation in two sub-bands simultaneously but, for the purpose of the testing, the equipment can be configured to:

- operate in a continuous transmit mode or with a constant duty cycle (x), and
- operate only in one sub-band.

Step 1:

For equipment configured into a continuous transmit mode (x = 1), proceed immediately with step 2.

- The output power of the transmitter shall be coupled to a matched diode detector or equivalent thereof. The output of the diode detector shall be connected to the vertical channel of an oscilloscope.
- The combination of the diode detector and the oscilloscope shall be capable of faithfully reproducing the duty cycle of the transmitter output signal.
- The observed duty cycle of the transmitter (Tx on / (Tx on + Tx off)) shall be noted as x $(0 < x \le 1)$, and recorded in the test report.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 22 of 51

Step 2:

- The RF output power shall be determined using a wideband RF power meter with a thermocouple detector or an equivalent thereof and with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be noted as A (in dBm).
- In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall be measured separately to calculate the total power (value A in dBm) for the UUT.

Step 3:

• The RF output power at the highest power level PH (e.i.r.p.) shall be calculated from the above measured power output A (in dBm), the observed duty cycle x, the stated antenna gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report.

If more than one antenna assembly is intended for this power setting or TPC range, the gain of the antenna assembly with the highest gain shall be used.

$$PH = A + G + Y + 10 \times \log (1 / x) (dBm). (5)$$

• This value PH shall be compared to the applicable limit contained in table 2 of clause 4.2.3.2.2.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 23 of 51

9.4 Test Result

Remark: $PH = A + G + Y + 10 \times log (1 / x) (dBm)$

Antenna Gain G=1 dBi, beamforming gain Y= 0 dB, duty cycle X=100%

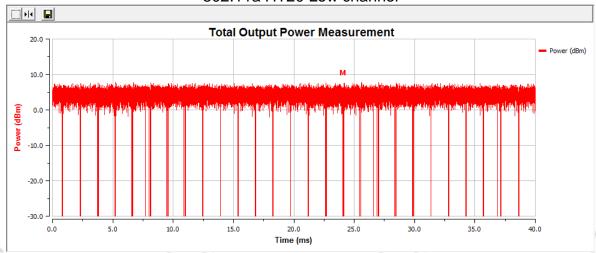
Madulation	Test conditions		e.i.r.p. (dBm)		
Modulation			Low channel	Middle channel	High channel
	Norr	nal	8.31	8.22	7.99
802.11a	Extreme	LTLV	8.26	8.17	7.96
		LTHV	8.13	8.07	7.84
HT20		HTLV	8.18	8.10	7.88
		HTHV	8.23	8.12	7.92
Limit				≤100mW (20dBm)	

Madulation	Test conditions		e.i.r.p. (dBm)			
Modulation			Low channel	Middle channel	High channel	
	Normal		8.53	8.27	8.08	
802.11n		LTLV	8.50	8.24	8.02	
	Extreme	LTHV	8.47	8.21	7.98	
HT20		HTLV	8.40	8.11	7.86	
		HTHV	8.43	8.15	7.92	
Limit			≤100mW (20dBm)			

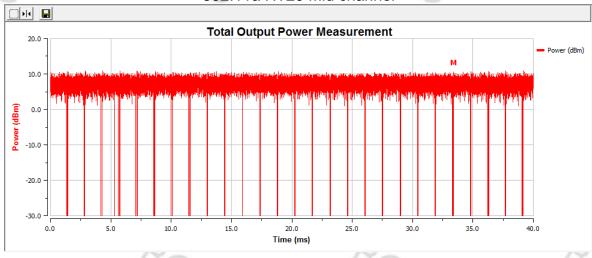
Madulation	Test conditions		e.i.r.p. (dBm)		
Modulation	1 est coi	iditions	Low channel	Middle channel	High channel
	Normal		6.89	× /	7.37
802.11n	Extreme	LTLV	6.83	00.1	7.35
/*		LTHV	6.75	T.Y.	7.27
HT40		HTLV	6.72		7.23
-		HTHV	6.80		7.31
Limit			≤100mW (20dBm)		

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 24 of 51

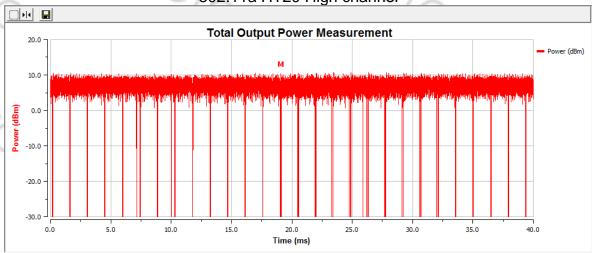
Madulatian	odulation Test conditions		e.i.r.p. (dBm)			
Modulation			Low channel	Middle channel	High channel	
-	Norr	nal	8.03	7.90	7.90	
802.11ac	Extreme	LTLV	7.87	7.77	7.79	
		LTHV	7.97	7.81	7.88	
HT20		HTLV	7.91	7.84	7.86	
		HTHV	7.96	7.86	7.83	
Limit			≤100mW (20dBm)			


					The state of the s			
J	Madulatian	Toot oor	ditions	e.i.r.p. (dBm)				
	Modulation	Test conditions		Low channel	Middle channel	High channel		
ĺ		Norr	nal	6.06	1	6.06		
	802.11ac		LTLV	6.02	/	6.03		
		- .	LTHV	5.88	/	5.86		
	HT40	Extreme	HTLV	5.91	/	5.90		
	0		HTHV	5.96	1 0	5.93		
ĺ	Limit		00.	≤100mW (20dBm)	1			

Modulation Test conditions		e.i.r.p. (dBm)			
Modulation	rest conditions		Low channel	Middle channel	High channel
0	Norr	nal	/	5.03	100
802.11ac		LTLV	/	5.01	
£ 1	Cytropo o	LTHV	1	4.96	1
HT80	Extreme	HTLV	/	4.98	/
		HTHV	/	4.91	/
Limit		≤100mW (20dBm)			

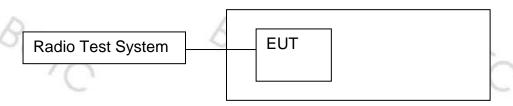

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 25 of 51

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY190200673-6E


Test Plots 802.11a HT20 Low channel

802.11a HT20 Mid channel

802.11a HT20 High channel



EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 26 of 51

10. POWER DENSITY

10.1 Block Diagram Of Test Setup

10.2 Limit

	Frequency range	Mean e.i.r.p. limit for P _H (dBm)		Mean e.i.r.p. (dBm/	•
	(MHz)	with TPC	without TPC	with TPC	without TPC
1	5 150 to 5 350	23	20/23 (see note 1)	10	7/10 (see note 2)
]	5 470 to 5 725	30 (see note 3)	27 (see note 3)	17 (see note 3)	14 (see note 3)

NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm

NOTE 2: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.

NOTE 3: Slave devices without a Radar Interference Detection function shall comply with the limits for the frequency range 5 250 MHz to 5 350 MHz.

10.3 Test procedure

This option is for equipment that can be configured to operate in a continuous transmit mode or with a constant duty cycle (x).

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test

- RBW: 1 MHz - VBW: 3 MHz

- Frequency Span: 2 x Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)

Detector Mode: PeakTrace Mode: Max Hold

Step 2:

• When the trace is complete, find the peak value of the power envelope and record the frequency.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 27 of 51

Step 3:

· Make the following changes to the settings of the spectrum analyser:

- Centre Frequency: Equal to the frequency recorded in step 2

- Frequency Span: 3 MHz

- RBW: 1 MHz - VBW: 3 MHz

Sweep Time: 1 minuteDetector Mode: RMSTrace Mode: Max Hold

Step 4:

• When the trace is complete, the trace shall be captured using the "Hold" or "View" option on the spectrum analyser.

- Find the peak value of the trace and place the analyser marker on this peak. This level is recorded as the highest mean power (Power Density) D in a 1 MHz band.
- Alternatively, where a spectrum analyser is equipped with a function to measure spectral Power Density, this function may be used to display the Power Density D in dBm / MHz.
- In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the Power Density of each transmit chain shall be measured separately to calculate the total Power Density (value D in dBm / MHz) for the UUT.

Step 5:

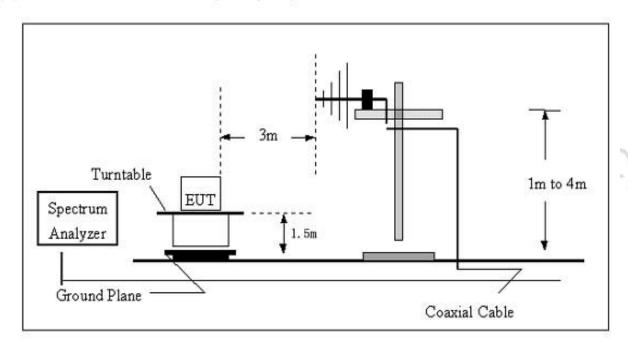
• The maximum spectral Power Density e.i.r.p. is calculated from the above measured Power Density D, the observed duty cycle x (see clause 5.4.4.2.1.1.2, step 1), the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used:

 $PD = D + G + Y + 10 \times \log (1 / x) (dBm / MHz) (14)$

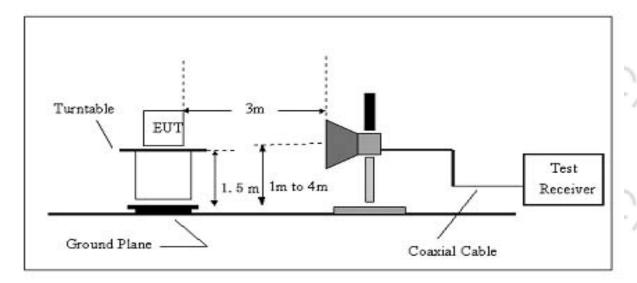
EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 28 of 51

10.4 Test Result

Remark: $PH = A + G + Y + 10 \times \log (1 / x) (dBm)$ Antenna Gain G=1 dBi, beamforming gain Y= 0 dB, duty cycle X=100%


Madulation	Madulation Test		Power Density (dBm/MHz)			
Modulation	conditions	Low channel	Middle channel	High channel		
802.11a HT20	Normal	-1.96	-2.15	-1.64		
802.11n HT20	Normal	-2.65	-2.81	-2.17		
802.11n HT40	Normal	-5.36		-5.17		
802.11ac HT20	Normal	-2.77	-3.40	-2.34		
802.11ac HT40	Normal	-5.73	/	-5.37		
802.11ac HT80	Normal	/	-9.06	/		
Limit		≤10dBm/MHz				

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 29 of 51



11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

- 11.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

EMC Report

Tel: 400-788-9558

11.1 Limits

Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz/300KHz
47 MHz to 74 MHz	-54 dBm	100 kHz/300KHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz/300KHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz/300KHz
118 MHz to 174 MHz	-36 dBm	100 kHz/300KHz
174 MHz to 230 MHz	-54 dBm	100 kHz/300KHz
230 MHz to 470 MHz	-36 dBm	100 kHz/300KHz
470 MHz to 862 MHz	-54 dBm	100 kHz/300KHz
862 MHz to 1 GHz	-36 dBm	100 kHz/300KHz
1 GHz to 5.15 GHz	-30 dBm	1 MHz/3MHz
5.35 GHz to 5.47 GHz	-30 dBm	1 MHz/3MHz
5.725 GHz to 26 GHz	-30 dBm	1 MHz/3MHz

11.3 Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber..
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

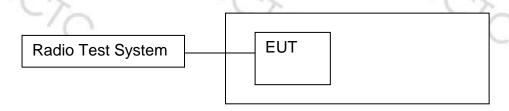
EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 31 of 51

11.4 Test Results

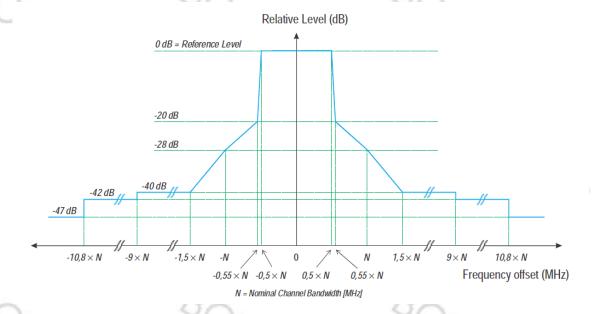
Test Mode: Transmitting 802.11a (worst case)

F	Receiver	Turn	RX An	tenna	Correct	Absolute Level	Re	sult
Frequency	Reading	table Angle	Height	Polar	Factor		Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dBm)	(dBm)	(dBm)	(dB)
	C.		lov	w chanı	nel		. C.	
502.71	-56.86	229	1.8	Н	-8.87	-65.73	-54	-11.73
502.71	-55.37	261	1.0	V	-8.87	-64.24	-54	-10.24
10360.00	-47.96	302	1.8	Н	10.36	-37.60	-30	-7.60
10360.00	-46.36	163	1.0	V	10.36	-36.00	-30	-6.00
15540.00	-50.13	92	1.4	Н	15.62	-34.51	-30	-4.51
15540.00	-49.97	65	1.2	V	15.62	-34.35	-30	-4.35
^			High	n chann	nel	^		
502.71	-57.65	71	1.3) H	-8.87	-66.52	-54	-12.52
502.71	-54.58	247	1.8	V	-8.87	-63.45	-54	-9.45
10480.00	-48.18	284	1.2	Н	10.47	-37.71	-30	-7.71
10480.00	-46.05	97	1.1	V	10.47	-35.58	-30	-5.58
15720.00	-49.95	304	1.9	Н	15.93	-34.02	-30	-4.02
15720.00	-49.59	253	1.8	V	15.93	-33.66	-30	-3.66

Remark:


Absolute Level = Receiver Reading + Factor

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 32 of 51



12. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

12.1 Block Diagram Of Test Setup

12.2 Limit

EMC Report

Tel: 400-788-9558

12.3 Test procedure

The UUT shall be configured for continuous transmit mode (duty cycle equal to 100 %). If this is not possible, then option 2 shall be used.

Step 1: Determination of the reference average power level.

Spectrum analyser settings:

- Resolution bandwidth: 1 MHz

- Video bandwidth: 30 kHz

- Detector mode: Peak

- Trace mode: Video Average

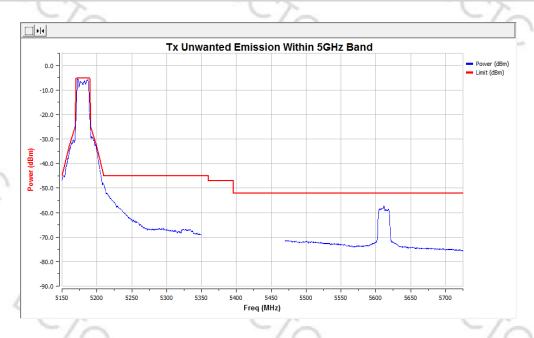
- Sweep Time: Coupled

- Centre Frequency: Centre frequency of the channel being tested

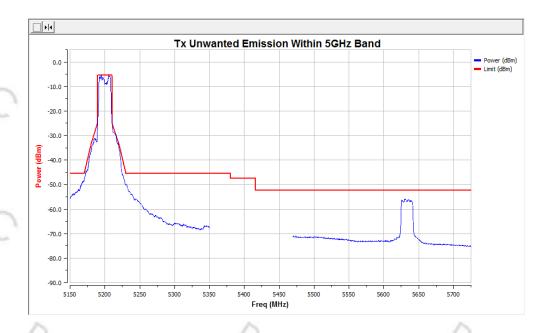
- Span: 2 x Nominal Channel Bandwidth

• Use the marker to find the highest average power level of the power envelope of the UUT. This level shall be used as the reference level for the relative measurements.

Step 2: Determination of the relative average power levels.

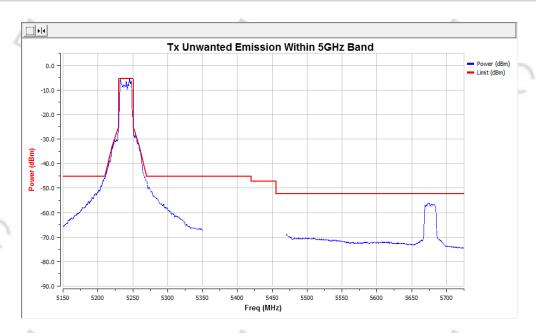

- Adjust the frequency range of the spectrum analyser to allow the measurement to be performed within the sub-bands 5 150 MHz to 5 350 MHz and 5 470 MHz to 5 725 MHz. No other parameter of the spectrum analyser should be changed.
- Compare the relative power envelope of the UUT with the limits defined in clause 4.2.4.2.2.

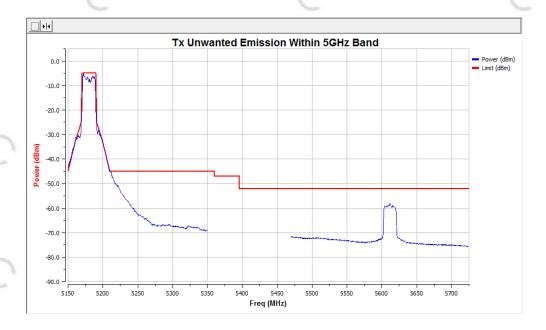
EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 34 of 51



12.4 Test Result

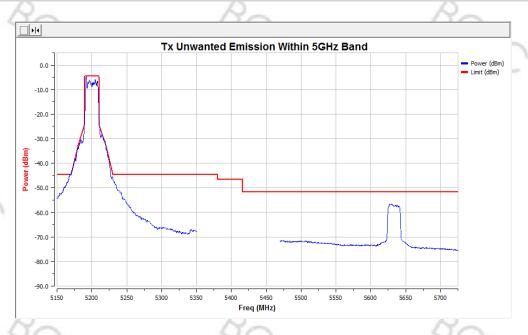
Modulation	Test Freq (MHz)	Status
802.11 a20 (Band 1)	5180	Pass


Modulation	Test Freq (MHz)	Status
802.11 a20 (Band 1)	5200	Pass

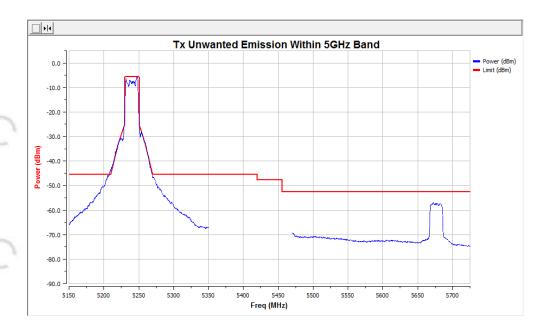

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 35 of 51

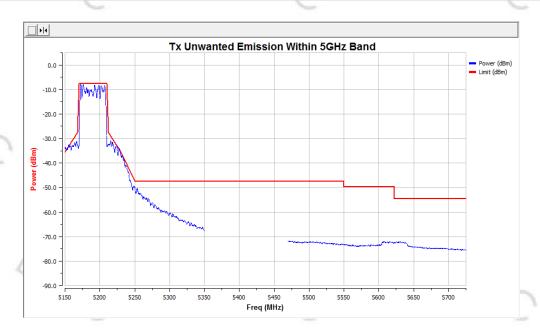
Modulation	Test Freq (MHz)	Status
802.11 a20 (Band 1)	5240	Pass

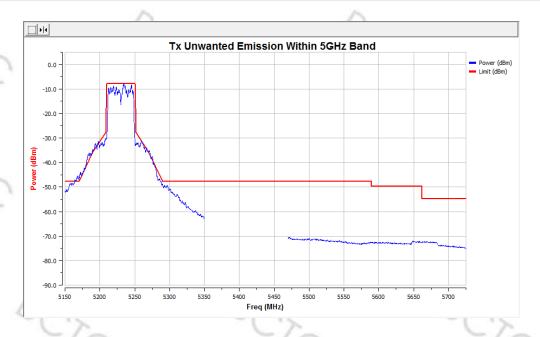
Modulation	Test Freq (MHz)	Status
802.11 n20 (Band 1)	5180	Pass



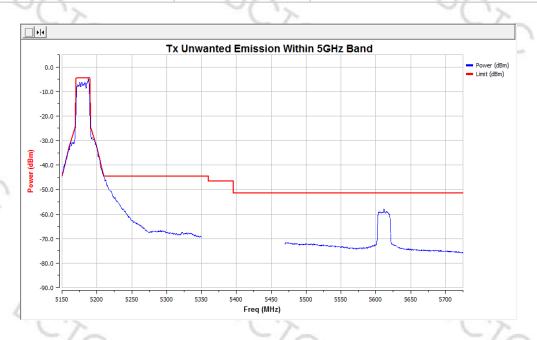
EMC Report


Tel: 400-788-9558

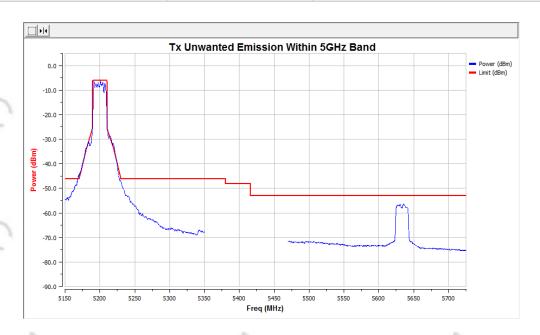

Modulation	Test Freq (MHz)	Status
802.11 n20 (Band 1)	5200	Pass


Modulation	Test Freq (MHz)	Status
802.11 n20 (Band 1)	5240	Pass

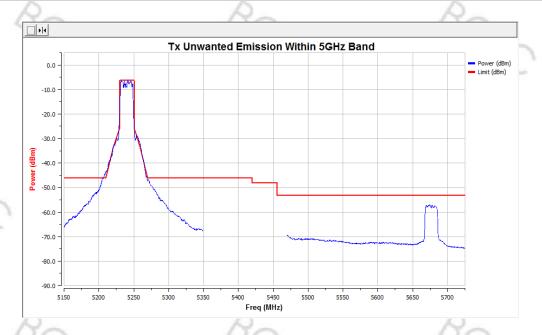
Modulation	Test Freq (MHz)	Status		
802.11 n40 (Band 1)	5190	Pass		



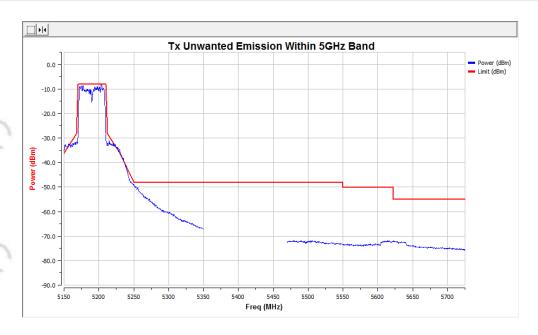
Modulation	Test Freq (MHz) Status	
802.11 n40 (Band 1)	5230	Pass

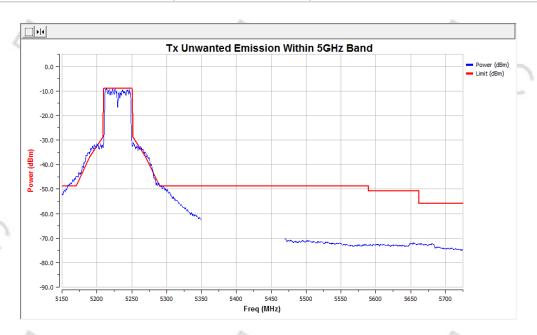


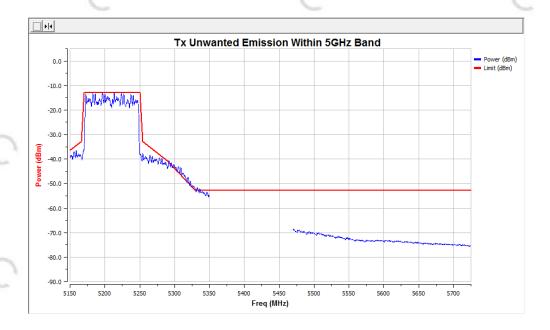
Modulation	dulation Test Freq (MHz) Statu	
802.11 ac20 (Band 1)	5180	Pass



Modulation	Test Freq (MHz)	Status		
802.11 ac20 (Band 1)	5200	Pass		

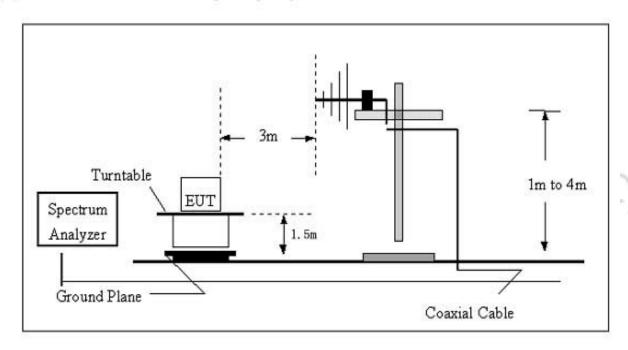


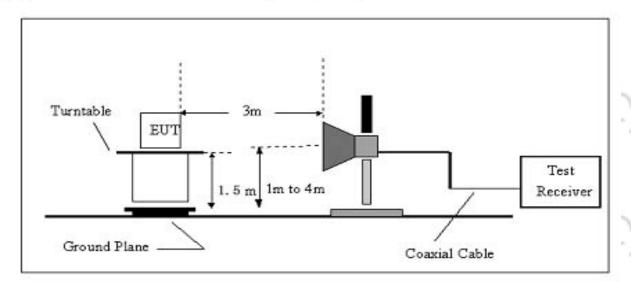

Modulation	Test Freq (MHz) Status		
802.11 ac20 (Band 1)	5240	Pass	


Modulation	Test Freq (MHz)	Status
802.11 ac40 (Band 1)	5190	Pass

Modulation	Test Freq (MHz)	Status
802.11 ac40 (Band 1)	5230	Pass

Modulation	Test Freq (MHz)	Status	
802.11 ac80 (Band 1)	5210	Pass	




13. RECEIVER SPURIOUS EMISSIONS

13.1 Block Diagram Of Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

13.2 Limits

Frequency(MHz)	Limit
30-1000	-57dBm
1000-12750	-47dBm

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 42 of 51

13.3 Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber..
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 43 of 51

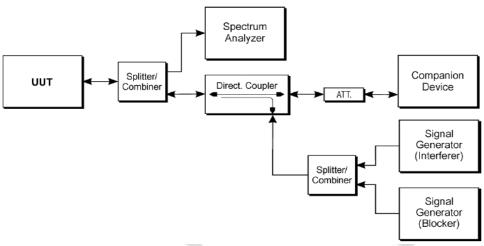
13.4 Test Results

Modulation: 802.11a20 (the worst data)

Fraguency	Receiver	Turn	RX An	tenna	Correct	Absolute	Re	sult
Frequency	Reading	table Angle	Height	Polar	Factor	Level	Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dBm)	(dBm)	(dBm)	(dB)
		80	2.11a20	low o	hannel			
366.59	-54.52	276	1.3	Н	-11.84	-66.36	-57.00	-9.36
366.59	-55.61	142	1.4	V	-11.84	-67.45	-57.00	-10.45
2489.63	-51.25	63	1.7	Н	-6.80	-58.05	-47.00	-11.05
2489.63	-53.12	241	1.7	V	-6.80	-59.92	-47.00	-12.92
		802	2.11a20	Mid	channel		l	
366.59	-54.18	306	1.4	Н	-11.84	-66.02	-57.00	-9.02
366.59	-55.02	1	1.9	V	-11.84	-66.86	-57.00	-9.86
2489.63	-50.97	259	1.0	- A	-6.80	-57.77	-47.00	-10.77
2489.63	-53.02	180	2.0	٧	-6.80	-59.82	-47.00	-12.82
	I	802	2.11a20	high	channel		I	
366.59	-54.20	149	1.4	Н	-11.84	-66.03	-57.00	-9.03
366.59	-54.68	31	1.9	V	-11.84	-66.52	-57.00	-9.52
2489.63	-52.12	159	1.2	Н	-6.80	-58.92	-47.00	-11.92
2489.63	-52.13	123	1.5	V	-6.80	-58.93	-47.00	-11.93

Remark

Absolute Level = Receiver Reading + Factor


Factor = Antenna Factor + Cable Loss - Pre-amplifier.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 44 of 51

14. ADAPTIVITY

14.1 Block Diagram Of Test Setup

14.2 Limit

		Operational Mode			
	Requirement	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)	
	Minimum Clear Channel			,	
× (Assessment (CCA) Time	20 us (see note 1)	(see note 2)	20 us (see note 1)	
	Maximum Channel Occupancy (COT) Time	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)	
	Minimum Idle Period	5% of COT	(see note 2)	NA	
	Extended CCA check	NA	(see note 2)	N*CCA (see note 4)	
	Short Control Signalling Transmissions	Maximum duty cycle	of 5% within an obs ms (see note 5)	servation period of 50	

Note 1: The CCA time used by the equipment shall be declared by the manufacturer. Note 2: LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using 'energy detect', as described in IEEE 802.11TM-2007[9], clauses 15 and 17, in IEEE 802.11n TM -2009[10], clauses 20.

Note 3: q is selected by the manufacturer in the range [4...32]

Note 4: The value of N shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

EMC Report

Tel: 400-788-9558

80%

14.3 Test procedure

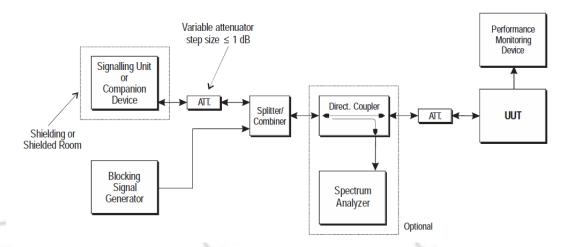
Step 1:

- The UUT shall connect to a companion device during the test. The signal generator, the spectrum analyser, the UUT, the traffic source and the companion device are connected using a set-up equivalent to the example given by figure 14 although the interference source is switched off at this point in time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interference signal. The traffic source might be part of the UUT itself.
- The received signal level (wanted signal from the companion device) at the UUT shall be sufficient to maintain a reliable link for the duration of the test. A typical value for the received signal level which can be used in most cases is -50 dBm/MHz.
- The analyser shall be set as follows:
- RBW: ≥ Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used)
- VBW: ≥ RBW (if the analyser does not support this setting, the highest available setting shall be used)
- Detector Mode: RMS
- Centre Frequency: Equal to the centre frequency of the operating channel
- Span: 0 Hz
- Sweep time: > 2 x Channel Occupancy Time
- Trace Mode: Clear/Write
- Trigger Mode: Video or RF/IF Power

Step 2:

- Configure the traffic source so that it fills the UUT's buffers to a level causing the UUT
 to always have transmissions queued (buffer-ready-for-transmission condition)
 towards the companion device. Where this is not possible, the UUT shall be
 configured to occupy the Channel Occupancy Time of the Fixed Frame Period
 to the highest extent possible.
- To avoid adverse effects on the measurement results, a unidirectional traffic source should be used. An example of such a unidirectional traffic source not triggering reverse traffic on higher layer protocols is UDP.

14.4 Test Result


Pass

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 46 of 51

15. RECEIVER BLOCKING

11.1 Block Diagram Of Test Setup

11.2 Limit

Wanted signal mean power	Blocking signal frequency	Blocking signal power (dBm) (see note 2)		Type of blocking
from companion device (dBm)	(MHz)	Master or Slave with radar detection (see table D.2, note 2)	Slave without radar detection (see table D.2, note 2)	signal
Pmin + 6 dB	5 100	-53	-59	Continuous Wave
Pmin + 6 dB	4 900 5 000 5 975	-47	-53	Continuous Wave

NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined clause 4.2.8.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the same levels should be used at the antenna connector irrespective of antenna gain.

11.3 Test procedure

Step 1:

The UUT shall be set to the first operating frequency to be tested (see clause 5.3.2).

Step 2:

• The blocking signal generator is set to the first frequency as defined in table 9.

Step 3:

 With the blocking signal generator switched off a communication link is set up between the UUT and the associated companion device using the test setup shown in figure 18. The attenuation of the variable attenuator shall be increased in 1 dB steps to

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 47 of 51

a value at which the minimum performance criteria as specified in clause 4.2.8.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.

• This signal level (Pmin) is increased by 6 dB resulting in a new level (Pmin + 6 dB) of the wanted signal at the UUT receiver input.

Step 4:

- The level of the blocking signal at the UUT input is set to the level provided in table 9. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.2.8.3 are met.
- If the performance criteria as specified in clause 4.2.8.3 are met, the level of the blocking signal at the UUT may be further increased (e.g. in steps of 1 dB) until the level whereby the performance criteria as specified in clause 4.2.8.3 are no longer met. The highest level at which the performance criteria are met is recorded in the test report.

Step 5:

 Repeat step 4 for each remaining combination of frequency and level as specified in table 9.

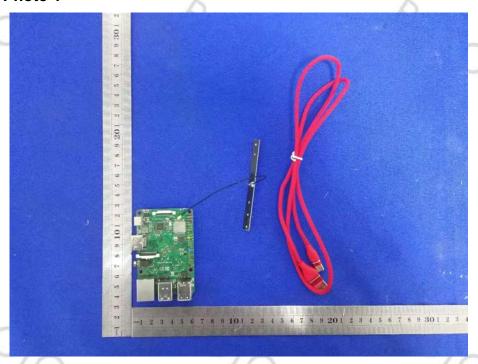
Step 6:

 Repeat step 2 to step 5 with the UUT operating at the other operating frequencies at which the blocking test has to be performed. See clause 5.3.2.

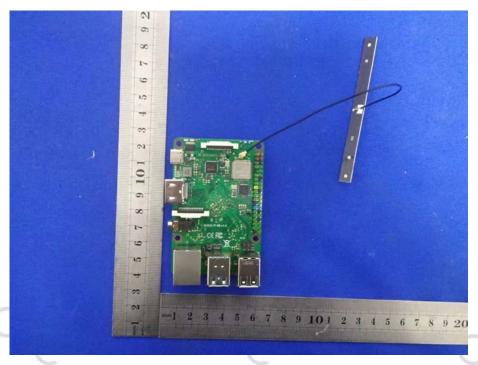
11.4 Test Result

Pass

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 48 of 51

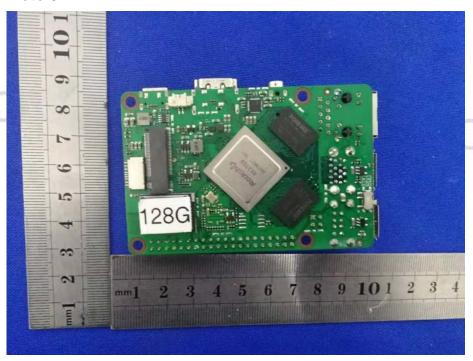

8C/C

80% 80%

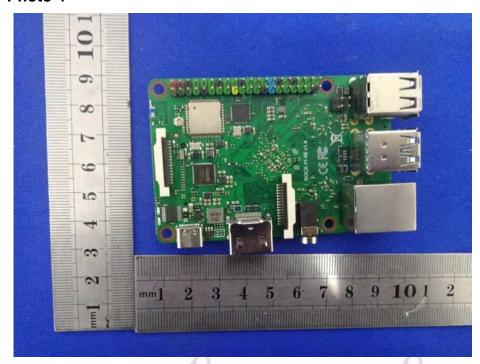


16. EUT PHOTOGRAPHS

EUT Photo 1



EUT Photo 2



8070 80.

EUT Photo 3

EUT Photo 4

17. EUT TEST SETUP PHOTOGRAPHS

Spurious emissions

0

******** END OF REPORT *******

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 51 of 51