

TEST REPORT

Report No.:	BCTC2110851942-4E
Applicant:	ROCKPI TRADING LIMITED
Product Name:	ROCK Pi 4
Model/Type Ref.:	ROCK Pi 4 MODEL B+
Tested Date:	2021-10-25 to 2021-11-03
Issued Date:	2021-11-03
She	enzhen
No.: BCTC/RF-EMC-005	Page: 1 of 62

FCC ID:2A3PA-ROCKPI4

Product Name:	ROCK Pi 4
Trademark:	N/A
Model/Type Ref.:	ROCK Pi 4 MODEL B+ ROCK Pi 4 MODEL A, ROCK Pi 4 MODEL A+, ROCK Pi 4 MODEL B
Prepared For:	ROCKPI TRADING LIMITED
Address:	Room 11, 27/f, Ga wah international centre, 191 Javaroad, north point, Hong Kong, China
Manufacturer:	ROCKPI TRADING LIMITED
Address:	Room 11, 27/f, Ga wah international centre, 191 Javaroad, north point, Hong Kong, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2021-10-25
Sample tested Date:	2021-10-25 to 2021-11-03
Issue Date:	2021-11-03
Report No.:	BCTC2110851942-4E
Test Standards:	FCC Part15 15.407 ANSI C63.10-2013 KDB 662911 D01 v02r01 KDB 789033 D02 v02r01
Test Results:	PASS
Tested	by: Approved by:
kelsey	Ton
Kelsey Tan/ Pro	ect Handler Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test F	Report Declaration	Page
1.	Version	
2.	Test Summary	6
3.	Measurement Uncertainty	,
4.	Product Information And Test Setup	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	1(
5.	Test Facility And Test Instrument Used	1
5.1	Test Facility	12
5.2	Test Instrument Used	1
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test Procedure	13
6.4	EUT Operating Conditions	13
6.5	Test Result	14
7.	Radiated Emissions	16
7.1	Block Diagram Of Test Setup	16
7.2	Limit	1′
7.3	Test Procedure	18
7.4	EUT Operating Conditions	19
7.5	Test Result	19
8.	Power Spectral Density Test	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test Procedure	29
8.4	FUT Operating Conditions	- 20
8.5	Test Result 26dB & 99% Emission Bandwidth	
9.	26dB & 99% Emission Bandwidth	
9.1	Block Diagram Of Test Setup	
9.2		
9.3	Test Procedure	
9.4	EUT Operating Conditions	
	Test Result	
10.	Maximum Conducted Output Power	
	RF-EMC-005 Page: 3 of 62 Edition:	
SCTC/F	RF-EMC-005 Page: 3 of 62 Edition:	A.4
		1

10.1 Block Diagram Of Test Setup	
10.2 Limit	
10.3 Test Procedure	
10.4 EUT Operating Conditions	40
10.5 Test Result	41
11. Out Of Band Emissions	42
11.1 Block Diagram Of Test Setup	42
11.2 Limit	
11.3 Test Procedure	
11.4 EUT Operating Conditions	
11.5 Test Result	
12. Spurious RF Conducted Emissions	46
12.1 Block Diagram Of Test Setup	46
12.2 Limit	46
12.3 Test Procedure	
12.4 Test Result	46
13. Frequency Stability Measurement	54
13.1 Block Diagram Of Test Setup	
13.2 Limit	54
13.3 Test Procedure	54
13.4 Test Result	55
14. Antenna Requirement	58
14.1 Limit	58
14.2 EUT Antenna	
15. EUT Photographs	
16. EUT Test Setup Photographs	60

(Note: N/A Means Not Applicable)

Page: 4 of 62

1. Version

Report No.	Issue Date	Description	Approved
BCTC2110851942-4E	2021-11-03	Original	Valid

5 of 62

2. Test Summary

The Product has been tested according to the following specifications:

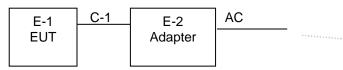
No.	Test Parameter	Clause No	Results
1	Spurious Radiated Emissions	15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(6)	PASS
2	Conducted Emission	15.207	N/A
3	26 dB and 99% Emission Bandwidth	15.407 (a)(5) 15.1049	PASS
4	Minimum 6 dB bandwidth	15.407(e)	PASS
5	Maximum Conducted Output Power	15.407 (a)(1) 15.407 (a)(3)	PASS
6	Band Edge	2.1051, 15.407(b)(1) 15.407(b)(4)	PASS
7	Power Spectral Density	15.407 (a)(1) 15.407 (a)(3)	PASS
8	Spurious Emissions at Antenna Terminals	2.1051, 15.407(b)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59℃

4. Product Information And Test Setup


4.1 Product Information

Model/Type Ref.:	ROCK Pi 4 MODEL B+ ROCK Pi 4 MODEL A, ROCK Pi 4 MODEL A+, ROCK Pi 4 MODEL B
Model differences:	All the model are the same circuit and RF module, except model names.
Hardware Version:	N/A
Software Version:	N/A
IEEE 802.11 WLAN Mode Supported	802.11a/n/ac(20MHz channel bandwidth) 802.11n/ac(40MHz channel bandwidth) 802.11ac(80MHz channel bandwidth)
Operation Frequency:	5180-5240MHz for 802.11a/n(HT20)/ac20; 5190-5230MHz for 802.11n(HT40)/ac40; 5210MHz for 802.11 ac80;
Data Rate	802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; 802.11ac(VHT20): NSS1, MCS0-MCS8 802.11ac(VHT40/VHT80):NSS1, MCS0-MCS9
Type of Modulation:	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac;
Number Of Channel	4 channels for 802.11a/n20 in the 5180-5240MHz band ; 2 channels for 802.11 n40 in the 5190-5230MHz band ; 1 channels for 802.11 ac80 in the 5210MHz band ;
Antenna installation:	Chip antenna
Antenna Gain:	2dBi
Ratings:	DC 9V/12V/15V/20/V


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	ROCK Pi 4	N/A	ROCK Pi 4 MODEL B+	N/A	EUT
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.5M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

802.11a/n/ac(20MHz) Carrier Frequency Channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220	-	-	\ .	-
40	5200	48	5240	-	-	-	-
					1.		

	802.11n /ac(40MHz) Carrier Frequency Channel								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
38	5190	-	-		· · · · · ·	N, N-N N N			
46	5230	-	-	-	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199				

802.11ac (80	MHz) Carrier Frequency Channel
Channel	Frequency (MHz)
42	5210

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11a / n/ ac 20 CH36/ CH40/ CH 48
Mode 2	802.11n/ ac40 CH38/ CH 46
Mode 3	802.11 ac80 CH 42
Mode 4	Link Mode

For Radiated Emission				
Final Test Mode Description				
Mode 1	802.11a / n/ ac 20 CH36/ CH40/ CH 48			
Mode 2	802.11n/ ac40 CH38/ CH 46			
Mode 3	802.11 ac80 CH 42			

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		CMD	N. N			
Parameters	DEF	DEF		DEF		

5. Test Facility And Test Instrument Used

5.1 Test Facility

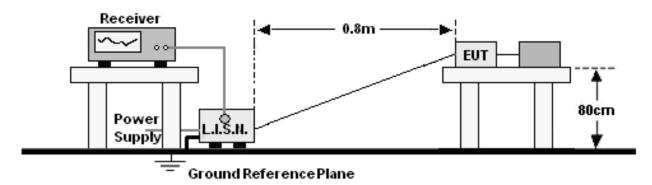
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

5.2 Test Instrument Used

	RF conducted test									
Equipment	Manufacturer	Model#	Model# Serial#		Next Cal.					
Power Metter	Keysight	E4419B	١	May 28, 2021	May 27, 2022					
Power Sensor (AV)	Keysight	E9 300A	١	May 28, 2021	May 27, 2022					
Signal Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY49100060	May 28, 2021	May 27, 2022					
Spectrum Analyzer 9kHz-40GHz	R&S	FSP40	100363	May 28, 2021	May 27, 2022					


	Radia	ted emissions	Test (966 chaml	ber)	
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 28, 2021	May 27, 2022
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163-9 42	Jun. 01, 2021	May 31, 2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022
Horn Antenna (18GHz-40GH z)	SCHWARZBECK	BBHA9170	822	May 28, 2021	May 27, 2022
Amplifier (18GHz-40GH z)	MITEQ	TTA1840-35- HG	2034381	May 28, 2021	May 27, 2022
Loop Antenna (9KHz-30MHz)	SCHWARZBECK	FMZB1519B	014	Jun. 02, 2021	Jun. 01, 2022
RF cables1 (9kHz-30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	May 28, 2021	May 27, 2022
RF cables2 (30MHz-1GHz)	Huber+Suhnar	30MHz-1GH z	1486150	May 28, 2021	May 27, 2022
RF cables3 (1GHz-40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022
Power Metter	Keysight	E4419B	\	May 28, 2021	May 27, 2022
Power Sensor (AV)	Keysight	E9 300A	١	May 28, 2021	May 27, 2022
Signal Analyzer 20kHz-26.5GH z	KEYSIGHT	N9020A	MY49100060	May 28, 2021	May 27, 2022
Spectrum Analyzer 9kHz-40GHz	Agilent	FSP40	100363	May 28, 2021	May 27, 2022
Software	Frad	EZ-EMC	FA-03A2 RE	·····	

Page: 12 of 62

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit	(dBuV)
FREQUENCT (IVITZ)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00
Notos:		

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

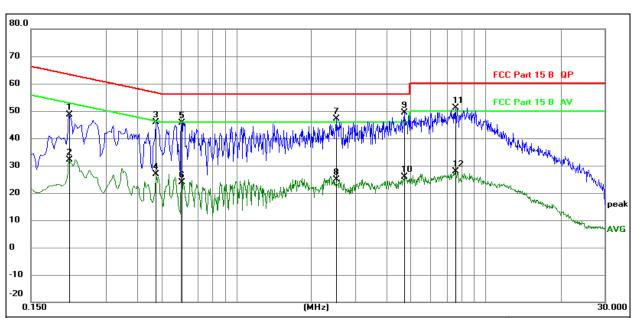
6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

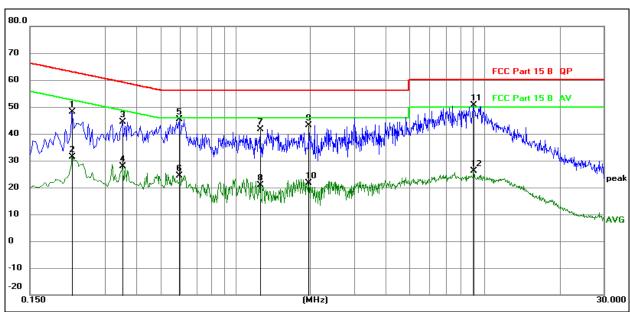

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 4

Remark:


All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

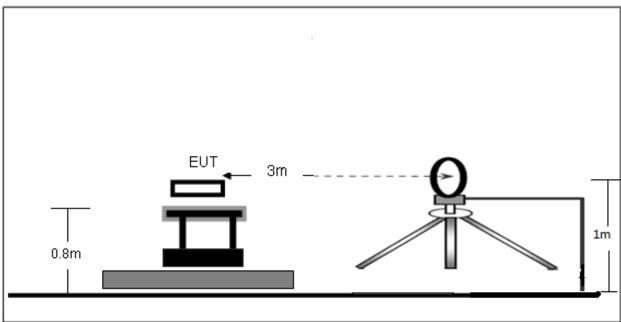
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.2128	28.92	19.61	48.53	63.10	-14.57	QP
2	0.2128	12.63	19.61	32.24	53.10	-20.86	AVG
3	0.4761	26.34	19.62	45.96	56.41	-10.45	QP
4	0.4761	7.23	19.62	26.85	46.41	-19.56	AVG
5	0.6043	25.92	19.62	45.54	56.00	-10.46	QP
6	0.6043	4.17	19.62	23.79	46.00	-22.21	AVG
7	2.5133	27.43	19.64	47.07	56.00	-8.93	QP
8	2.5133	5.18	19.64	24.82	46.00	-21.18	AVG
9 *	4.7213	29.60	19.70	49.30	56.00	-6.70	QP
10	4.7213	6.24	19.70	25.94	46.00	-20.06	AVG
11	7.5258	31.30	19.75	51.05	60.00	-8.95	QP
12	7.5258	8.01	19.75	27.76	50.00	-22.24	AVG

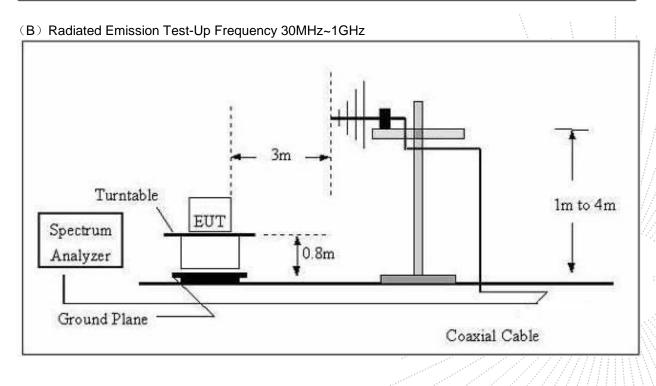
No.: BCTC/RF-EMC-005

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 4

Remark:

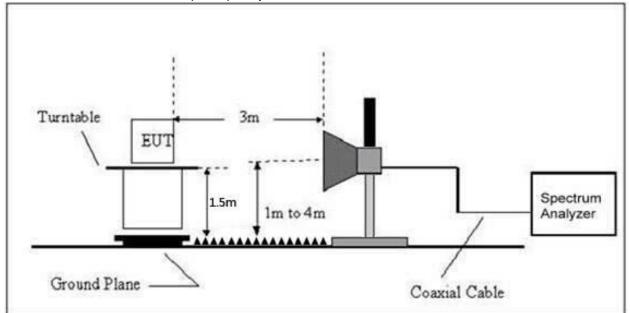
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


		D	0				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.2220	28.53	19.61	48.14	62.74	-14.60	QP
2	0.2220	11.78	19.61	31.39	52.74	-21.35	AVG
3	0.3525	24.80	19.62	44.42	58.90	-14.48	QP
4	0.3525	8.35	19.62	27.97	48.90	-20.93	AVG
5	0.5955	25.65	19.62	45.27	56.00	-10.73	QP
6	0.5955	4.77	19.62	24.39	46.00	-21.61	AVG
7	1.2615	21.97	19.63	41.60	56.00	-14.40	QP
8	1.2615	1.34	19.63	20.97	46.00	-25.03	AVG
9	1.9680	23.45	19.63	43.08	56.00	-12.92	QP
10	1.9680	2.05	19.63	21.68	46.00	-24.32	AVG
11 *	9.0510	30.85	19.78	50.63	60.00	-9.37	QP
12	9.0510	6.38	19.78	26.16	50.00	-23.84	AVG



7. Radiated Emissions

7.1 Block Diagram Of Test Setup


(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY		Limit (dBuV/m) (at 3M)
(MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

7.3 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205.

It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth Video Bandwidth
30 to 1000	QP	120 kHz 300 kHz
	Peak	1 MHz 1 MHz
Above 1000	Average	1 MHz 10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the

narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

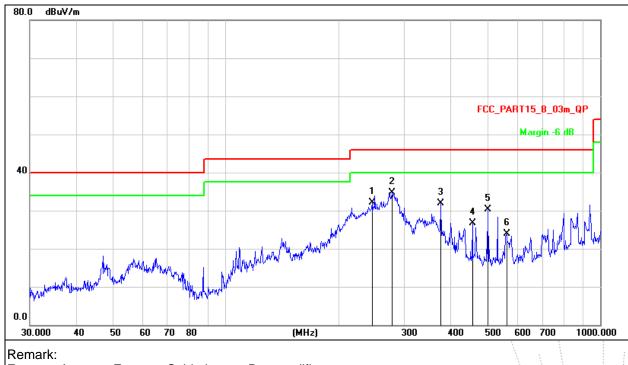
Below 30MHz

Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage :	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

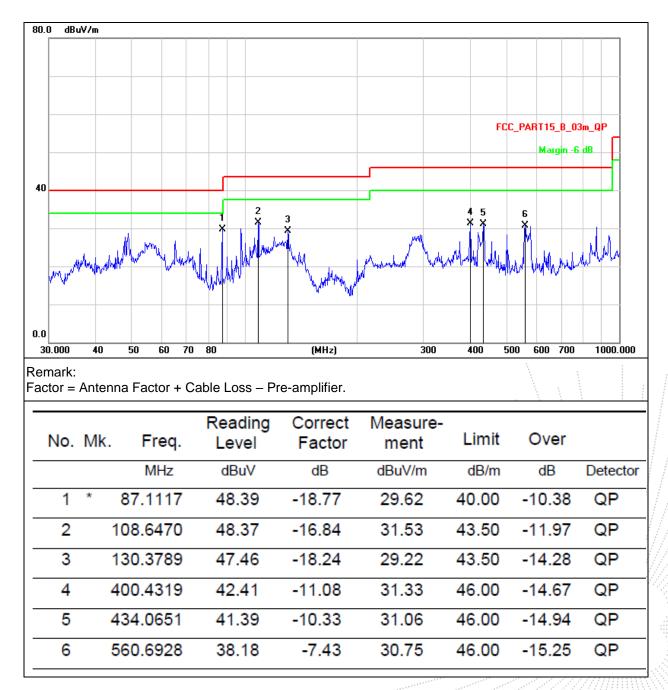
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	Horizontal



Factor = Antenna	Factor +	Cable Loss –	Pre-amplifier.
------------------	----------	--------------	----------------

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		245.9509	47.26	-15.24	32.02	46.00	-13.98	QP
2	*	278.0668	48.90	-14.28	34.62	46.00	-11.38	QP
3		375.9385	43.55	-11.64	31.91	46.00	-14.09	QP
4		455.9058	36.46	-9.85	26.61	46.00	-19.39	QP
5		501.1790	39.19	-8.91	30.28	46.00	-15.72	QP
6		562.6624	31.20	-7.39	23.81	46.00	-22.19	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kpa	Test Voltage :	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	Vertical

Between 10	GHz – 40GHz
------------	-------------

Test Mo	de :	TX(5.1G) - 80)2.11a						
	1			1					
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	1		Low C	hannel (518	30 MHz)-Ab	ove 1G	/		
V	4434.169	63.58	5.94	35.40	44.00	60.92	68.20	-7.28	PK
V	4434.169	43.87	5.94	35.40	44.00	41.21	54.00	-12.79	AV
V	10360.080	62.18	8.46	39.75	44.50	65.89	74.00	-8.11	PK
V	10360.080	43.60	8.46	39.75	44.50	47.31	54.00	-6.69	AV
V	15540.142	62.68	10.12	38.80	44.10	67.50	74.00	-6.50	PK
V	15540.142	43.01	10.12	38.80	42.70	49.23	54.00	-4.77	AV
Н	4434.009	61.21	5.94	35.18	44.00	58.33	68.20	-9.87	PK
Н	4434.009	43.32	5.94	35.18	44.00	40.44	54.00	-13.56	AV
Н	10360.087	50.43	8.46	38.71	44.50	53.10	74.00	-20.90	PK
Н	10360.087	40.59	8.46	38.71	44.50	43.26	54.00	-10.74	AV
Н	15540.148	50.21	10.12	38.38	44.10	54.61	74.00	-19.39	PK
Н	15540.148	42.84	10.12	38.38	44.10	47.24	54.00	-6.76	AV
	•		middle (Channel (52					
V	4592.023	64.21	6.48	36.35	44.05	62.99	74.00	-11.01	PK
V	4592.023	43.97	6.48	36.35	44.05	42.75	54.00	-11.25	AV
V	10400.175	64.37	8.47	37.88	44.51	66.21	68.20	-1.99	PK
V	10400.175	43.70	8.47	37.88	44.51	45.54	54.00	-8.46	AV
V	15600.030	64.75	10.12	38.80	44.10	69.57	74.00	-4.43	PK
V	15600.030	43.93	10.12	38.80	42.70	50.15	54.00	-3.85	AV
Н	4592.007	62.65	6.48	36.37	44.05	61.45	74.00	-12.55	PK
Н	4592.007	43.41	6.48	36.37	44.05	42.21	54.00	-11.79	AV
Н	10400.089	54.00	8.47	38.64	44.50	56.61	68.20	-11.59	PK
Н	10400.089	42.33	8.47	38.64	44.50	44.94	54.00	-9.06	AV
Н	15600.108	53.25	10.12	38.38	44.10	57.65	74.00	-16.35	PK
Н	15600.108	40.90	10.12	38.38	44.10	45.30	54.00	-8.70	AV
	•		High C	hannel (524	40 MHz)-Ab				
V	4739.047	61.91	7.10	37.24	43.50	62.75	74.00	-11.25	PK
V	4739.047	43.81	7.10	37.24	43.50	44.65	54.00	-9.35	AV
V	10480.059	60.75	8.46	37.68	44.50	62.39	68.20	-5.81	PK
V	10480.059	43.24	8.46	37.68	44.50	44.88	54.00	-9.12	AV
V	15720.124	64.94	10.12	38.80	44.10	69.76	74.00	-4.24	PK
V	15720.124		10.12	38.80	42.70	49.64	54.00	-4.36	AV
Н	4739.060	61.89	7.10	37.24	43.50	62.73	74.00	-11.27	PK
Н	4739.060	43.72	7.10	37.24	43.50	44.56	54.00	-9.44	AV
Н	10480.059	50.17	8.46	38.57	44.50	52.70	68.20	-15.50	PK
Н	10480.059	43.53	8.46	38.57	44.50	46.06	54.00	-7.94	AV
Н	15720.075	53.77	10.12	38.38	44.10	58.17	74.00	-15.83	PK
H	15720.075	43.78	10.12	38.38	44.10	48.18	54.00	-5.82	AV

Note: PK value is lower than the Average value limit, So average didn't record. The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. The worst case is Antenna A.

est Mo	de : T	X(5.1G) - 80	02.11n-HT	Γ20					
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low C	hannel (518	30 MHz)-Ab	ove 1G	· ·		
V	4434.004	63.55	5.94	35.40	44.00	60.89	68.20	-7.31	PK
V	4434.004	43.24	5.94	35.40	44.00	40.58	54.00	-13.42	AV
V	10360.188	61.28	8.46	39.75	44.50	64.99	68.20	-3.21	PK
V	10360.188	43.06	8.46	39.75	44.50	46.77	54.00	-7.23	AV
V	15540.064	63.52	10.12	38.80	44.10	68.34	74.00	-5.66	PK
V	15540.064	43.87	10.12	38.80	42.70	50.09	54.00	-3.91	AV
Н	4434.077	64.39	5.94	35.18	44.00	61.51	68.20	-6.69	PK
Н	4434.077	43.25	5.94	35.18	44.00	40.37	54.00	-13.63	AV
Η	10360.061	50.58	8.46	38.71	44.50	53.25	68.20	-14.95	PK
Н	10360.061	44.28	8.46	38.71	44.50	46.95	54.00	-7.05	AV
Н	15540.042	54.85	10.12	38.38	44.10	59.25	74.00	-14.75	PK
Н	15540.042	41.52	10.12	38.38	44.10	45.92	54.00	-8.08	AV
			middle (Channel (52	200 MHz)-A	bove 1G			
V	4592.098	60.30	6.48	36.35	44.05	59.08	74.00	-14.92	PK
V	4592.098	43.79	6.48	36.35	44.05	42.57	54.00	-11.43	AV
V	10400.033	64.40	8.47	37.88	44.51	66.24	68.20	-1.96	PK
V	10400.033	43.09	8.47	37.88	44.51	44.93	54.00	-9.07	AV
V	15600.159	63.62	10.12	38.80	44.10	68.44	74.00	-5.56	PK
V	15600.159	43.47	10.12	38.80	42.70	49.69	54.00	-4.31	AV
Н	4592.115	64.70	6.48	36.37	44.05	63.50	74.00	-10.50	PK
Н	4592.115	43.44	6.48	36.37	44.05	42.24	54.00	-11.76	AV
Н	10400.098	51.19	8.47	38.64	44.50	53.80	68.20	-14.40	PK
Н	10400.098	44.42	8.47	38.64	44.50	47.03	54.00	-6.97	AV
Н	15600.190	52.27	10.12	38.38	44.10	56.67	74.00	-17.33	PK
Н	15600.190	40.06	10.12	38.38	44.10	44.46	54.00	-9.54	AV
			High C	hannel (524	40 MHz)-Ab	ove 1G			
V	4739.131	64.22	7.10	37.24	43.50	65.06	74.00	-8.94	PK
V	4739.131	43.05	7.10	37.24	43.50	43.89	54.00	-10.11	AV
V	10480.030	63.55	8.46	37.68	44.50	65.19	68.20	-3.01	PK
V	10480.030	43.27	8.46	37.68	44.50	44.91	54.00	-9.09	AV
V	15720.142	62.73	10.12	38.80	44.10	67.55	74.00	-6.45	PK
V	15720.142	43.80	10.12	38.80	42.70	50.02	54.00	-3.98	AV
Н	4739.166	62.98	7.10	37.24	43.50	63.82	74.00	-10.18	PK
Н	4739.166	43.26	7.10	37.24	43.50	44.10	54.00	-9.90	AV
Н	10480.142	54.37	8.46	38.57	44.50	56.90	68.20	-11.30	PK
Н	10480.142	43.94	8.46	38.57	44.50	46.47	54.00	-7.53	AV
Н	15720.013	51.70	10.12	38.38	44.10	56.10	74.00	-17.90	PK
Н	15720.013	44.51	10.12	38.38	44.10	48.91	54.00	-5.09	AV

Note: PK value is lower than the Average value limit, So average didn't record. The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Test Mo	de :	TX(5.1G) - 8	02.11n-H	Г40					
	1	1	r	1			r	r	
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low C	hannel (519	0 MHz)-Ab	ove 1G			
V	4434.125	64.70	5.94	35.40	44.00	62.04	74.00	-11.96	PK
V	4434.125	43.01	5.94	35.40	44.00	40.35	54.00	-13.65	AV
V	10380.166	60.16	8.46	39.75	44.50	63.87	68.20	-4.33	PK
V	10380.166	43.75	8.46	39.75	44.50	47.46	54.00	-6.54	AV
V	15570.061	61.06	10.12	38.80	44.10	65.88	74.00	-8.12	PK
V	15570.061	43.61	10.12	38.80	42.70	49.83	54.00	-4.17	AV
Н	4434.009	62.87	5.94	35.18	44.00	59.99	74.00	-14.01	PK
Н	4434.009	43.00	5.94	35.18	44.00	40.12	54.00	-13.88	AV
Н	10380.147	50.61	8.46	38.71	44.50	53.28	68.20	-14.92	PK
Н	10380.147	42.63	8.46	38.71	44.50	45.30	54.00	-8.70	AV
Н	15570.080	54.70	10.12	38.38	44.10	59.10	74.00	-14.90	PK
Н	15570.080	40.64	10.12	38.38	44.10	45.04	54.00	-8.96	AV
			middle (Channel (52	230 MHz)-A	bove 1G			
V	4739.133	62.91	6.48	36.35	44.05	61.69	74.00	-12.31	PK
V	4739.133	43.65	6.48	36.35	44.05	42.43	54.00	-11.57	AV
V	10460.140	62.66	8.47	37.88	44.51	64.50	68.20	-3.70	PK
V	10460.140	43.15	8.47	37.88	44.51	44.99	54.00	-9.01	AV
V	15690.053	62.65	10.12	38.80	44.10	67.47	74.00	-6.53	PK
V	15690.053	43.56	10.12	38.80	42.70	49.78	54.00	-4.22	AV
Н	4739.104	62.21	6.48	36.37	44.05	61.01	74.00	-12.99	PK
Н	4739.104	43.16	6.48	36.37	44.05	41.96	54.00	-12.04	AV
Н	10460.053	54.08	8.47	38.64	44.50	56.69	68.20	-11.51	PK
Н	10460.053	41.44	8.47	38.64	44.50	44.05	54.00	-9.95	AV
Н	15690.146	50.43	10.12	38.38	44.10	54.83	74.00	-19.17	PK
Н	15690.146	43.60	10.12	38.38	44.10	48.00	54.00	-6.00	AV

Note: PK value is lower than the Average value limit, So average didn't record.

The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m).

est Mo	de : T	X(5.1G) - 80	02.11 AC2	20					
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low C	hannel (518	30 MHz)-Ab	ove 1G	· ·		
V	4434.075	60.90	5.94	35.40	44.00	58.24	68.20	-9.96	PK
V	4434.075	43.54	5.94	35.40	44.00	40.88	54.00	-13.12	AV
V	10360.141	63.31	8.46	39.75	44.50	67.02	74.00	-6.98	PK
V	10360.141	43.10	8.46	39.75	44.50	46.81	54.00	-7.19	AV
V	15540.032	63.10	10.12	38.80	44.10	67.92	74.00	-6.08	PK
V	15540.032	43.11	10.12	38.80	42.70	49.33	54.00	-4.67	AV
Н	4434.130	60.01	5.94	35.18	44.00	57.13	68.20	-11.07	PK
Н	4434.130	43.77	5.94	35.18	44.00	40.89	54.00	-13.11	AV
Н	10360.110	52.29	8.46	38.71	44.50	54.96	74.00	-19.04	PK
Н	10360.110	44.84	8.46	38.71	44.50	47.51	54.00	-6.49	AV
Н	15540.173	53.88	10.12	38.38	44.10	58.28	74.00	-15.72	PK
Н	15540.173	44.83	10.12	38.38	44.10	49.23	54.00	-4.77	AV
			middle (Channel (52	200 MHz)-A	bove 1G			
V	4592.104	62.18	6.48	36.35	44.05	60.96	74.00	-13.04	PK
V	4592.104	43.34	6.48	36.35	44.05	42.12	54.00	-11.88	AV
V	10400.076	62.24	8.47	37.88	44.51	64.08	68.20	-4.12	PK
V	10400.076	43.98	8.47	37.88	44.51	45.82	54.00	-8.18	AV
V	15600.161	64.35	10.12	38.80	44.10	69.17	74.00	-4.83	PK
V	15600.161	43.09	10.12	38.80	42.70	49.31	54.00	-4.69	AV
Н	4592.089	60.08	6.48	36.37	44.05	58.88	74.00	-15.12	PK
Н	4592.089	43.61	6.48	36.37	44.05	42.41	54.00	-11.59	AV
Н	10400.078	50.40	8.47	38.64	44.50	53.01	68.20	-15.19	PK
Н	10400.078	44.05	8.47	38.64	44.50	46.66	54.00	-7.34	AV
Н	15600.176	50.42	10.12	38.38	44.10	54.82	74.00	-19.18	PK
Н	15600.176	44.17	10.12	38.38	44.10	48.57	54.00	-5.43	AV
			High C	hannel (524	40 MHz)-Ab	ove 1G			
V	4739.015	64.37	7.10	37.24	43.50	65.21	74.00	-8.79	PK
V	4739.015	43.75	7.10	37.24	43.50	44.59	54.00	-9.41	AV
V	10480.067	60.90	8.46	37.68	44.50	62.54	68.20	-5.66	PK
V	10480.067	43.82	8.46	37.68	44.50	45.46	54.00	-8.54	AV
V	15720.151	61.69	10.12	38.80	44.10	66.51	74.00	-7.49	PK
V	15720.151	43.71	10.12	38.80	42.70	49.93	54.00	-4.07	AV
Н	4739.092	60.17	7.10	37.24	43.50	61.01	74.00	-12.99	PK
Н	4739.092	43.43	7.10	37.24	43.50	44.27	54.00	-9.73	AV
Н	10480.064	51.62	8.46	38.57	44.50	54.15	68.20	-14.05	PK
Н	10480.064	43.07	8.46	38.57	44.50	45.60	54.00	-8.40	AV
Н	15720.085	51.90	10.12	38.38	44.10	56.30	74.00	-17.70	PK
Н	15720.085	41.31	10.12	38.38	44.10	45.71	54.00	-8.29	AV

Note: PK value is lower than the Average value limit, So average didn't record. The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Test Mo	de : T	X(5.1G) - 80	02.11 AC4	10					
	I	1							
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	•		Low C	hannel (519	0 MHz)-Ab	ove 1G	•		
V	4434.139	61.43	5.94	35.40	44.00	58.77	74.00	-15.23	PK
V	4434.139	43.60	5.94	35.40	44.00	40.94	54.00	-13.06	AV
V	10380.115	60.20	8.46	39.75	44.50	63.91	68.20	-4.29	PK
V	10380.115	43.70	8.46	39.75	44.50	47.41	54.00	-6.59	AV
V	15570.108	62.59	10.12	38.80	44.10	67.41	74.00	-6.59	PK
V	15570.108	43.74	10.12	38.80	42.70	49.96	54.00	-4.04	AV
Н	4434.176	60.05	5.94	35.18	44.00	57.17	74.00	-16.83	PK
Н	4434.176	43.84	5.94	35.18	44.00	40.96	54.00	-13.04	AV
Н	10380.004	54.16	8.46	38.71	44.50	56.83	68.20	-11.37	PK
Н	10380.004	41.74	8.46	38.71	44.50	44.41	54.00	-9.59	AV
Н	15570.106	51.03	10.12	38.38	44.10	55.43	74.00	-18.57	PK
Н	15570.106	43.37	10.12	38.38	44.10	47.77	54.00	-6.23	AV
			middle (Channel (52	230 MHz)-A	bove 1G			
V	4739.083	64.84	6.48	36.35	44.05	63.62	74.00	-10.38	PK
V	4739.083	43.10	6.48	36.35	44.05	41.88	54.00	-12.12	AV
V	10460.021	63.50	8.47	37.88	44.51	65.34	68.20	-2.86	PK
V	10460.021	43.76	8.47	37.88	44.51	45.60	54.00	-8.40	AV
V	15690.160	60.31	10.12	38.80	44.10	65.13	74.00	-8.87	PK
V	15690.160	43.05	10.12	38.80	42.70	49.27	54.00	-4.73	AV
Н	4739.134	63.38	6.48	36.37	44.05	62.18	74.00	-11.82	PK
Н	4739.134	43.50	6.48	36.37	44.05	42.30	54.00	-11.70	AV
Н	10460.124	52.59	8.47	38.64	44.50	55.20	68.20	-13.00	PK
Н	10460.124	43.37	8.47	38.64	44.50	45.98	54.00	-8.02	AV
Н	15690.112	51.59	10.12	38.38	44.10	55.99	74.00	-18.01	PK
Н	15690.112	40.80	10.12	38.38	44.10	45.20	54.00	-8.80	AV

Note: PK value is lower than the Average value limit, So average didn't record.

The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m).

Test Mo	Test Mode : TX(5.1G) - 802.11 AC80									
Polar	Frequency	Meter Reading	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре	
				(5210 MHz)-Above 10	6				
V	4434.095	60.96	5.94	35.40	44.00	58.30	74.00	-15.70	PK	
V	4434.095	43.41	5.94	35.40	44.00	40.75	54.00	-13.25	AV	
V	10420.176	61.87	8.46	39.75	44.50	65.58	68.20	-2.62	PK	
V	10420.176	43.38	8.46	39.75	44.50	47.09	54.00	-6.91	AV	
V	15630.047	64.21	10.12	38.80	44.10	69.03	74.00	-4.97	PK	
V	15630.047	43.36	10.12	38.80	42.70	49.58	54.00	-4.42	AV	
Н	4434.141	60.29	5.94	35.18	44.00	57.41	74.00	-16.59	PK	
Н	4434.141	43.05	5.94	35.18	44.00	40.17	54.00	-13.83	AV	
Н	10420.033	53.78	8.46	38.71	44.50	56.45	68.20	-11.75	PK	
Н	10420.033	40.78	8.46	38.71	44.50	43.45	54.00	-10.55	AV	
Н	15630.034	52.39	10.12	38.38	44.10	56.79	74.00	-17.21	PK	
Н	15630.034	43.43	10.12	38.38	44.10	47.83	54.00	-6.17	AV	

Note: PK value is lower than the Average value limit, So average didn't record.

The 26.5-40G amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

8. Power Spectral Density Test

8.1 Block Diagram Of Test Setup

8.2 Limit

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in

maximum conducted output power and maximum power spectral density is required for each

1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional

gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.3 Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set $RBW \ge 1/T$, where T is defined in section II.B.I.a).

b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

8.4 EUT Operating Conditions

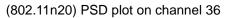
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%			
Pressure :	101kPa	Test Voltage :	DC 9V			
Test Mode :	TX Frequency U-NII-1 (5180-5240MHz)					

Test Mode	Frequency	Measured Power Density (dBm/MHz)	Limit (dBm/MHz)	Result
	5180 MHz	2.652	11	PASS
802.11 a	5200 MHz	1.941	11	PASS
	5240 MHz	2.690	11	PASS
	5180 MHz	0.454	11	PASS
802.11 n20	5200 MHz	-0.451	11	PASS
	5240 MHz	-0.037	11	PASS
000 11 = 10	5190 MHz	-1.904	11	PASS
802.11 n40	5230 MHz	-2.160	∖_11 _\ _	PASS
	5180 MHz	-0.010	<u>,</u> 11, ∖ ∖	PASS
802.11 AC20	5200 MHz	0.974	11	PASS
	5240 MHz	-0.267	11	PASS
	5190 MHz	-1.814	11	PASS
802.11 AC40	5230 MHz	-2.087	11	PASS
802.11 AC80	5210 MHz	-1.889	11	PASS

(802.11a) PSD plot on channel 36



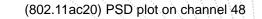
(802.11a) PSD plot on channel 40

(802.11a) PSD plot on channel 48

(802.11n20) PSD plot on channel 40

(802.11n20) PSD plot on channel 48

(802.11n40) PSD plot on channel 46



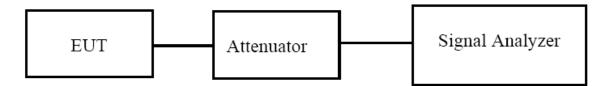
(802.11ac20) PSD plot on channel 36

(802.11ac20) PSD plot on channel 40

(802.11ac40) PSD plot on channel 38

(802.11ac40) PSD plot on channel 46

(802.11ac80) PSD plot on channel 42



9. 26dB & 99% Emission Bandwidth

9.1 Block Diagram Of Test Setup

9.2 Limit

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

9.3 Test Procedure

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
 - 2. Set span = 1.5 times to 5.0 times the OBW.
 - 3. Set $\overrightarrow{RBW} = 1$ % to 5 % of the OBW
 - 4. Set VBW ≥ 3 · RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

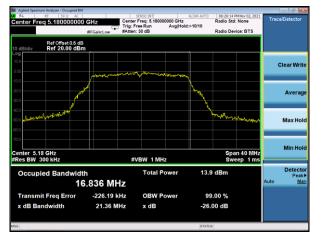
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

9.4 EUT Operating Conditions

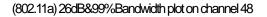
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

9.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%		
Pressure :	101kPa	Test Voltage :	DC 9V		
Test Mode : TX Frequency U-NII-1 (5180-5240MHz)					


Mode	Channel	Frequency (MHz)	99% bandwidth(MHz)	26dB bandwidth(MHz)	Result	
	CH36	5180	16.84	21.36	Pass	
802.11a	CH40	5200	16.82	20.97	Pass	
	CH48	5240	16.80	21.35	Pass	
	CH36	5180	17.87	21.31	Pass	
802.11 n20	CH40	5200	17.86	21.63	Pass	
	CH48	5240	17.86	21.56	Pass	
802.11 n40	CH 38	5190	36.29	40.56	Pass	
002.111140	CH 46	5230	36.32	40.66	Pass	
	CH36	5180	17.93	21,50	Pass	
802.11 AC20	CH40	5200	17.95	21.56	Pass	
	CH48	5240	17.92	21.44	Pass	
802.11 AC40	CH 38	5190	36.36	40.53	Pass	
0UZ.11 AU4U	CH 46	5230	36.43	40.79	Pass	
802.11 AC80	CH 42	5210	75.39	81.03	Pass	

Page: 35 of 62


Test plot

(802.11a) 26dB&99%Bandwidth plot on channel 36

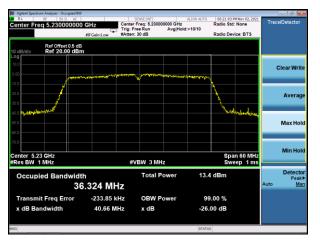
(802.11a) 26dB&99%Bandwidth plot on channel 40



(802.11 n20) 26dB&99%Bandwidth plot on channel 36

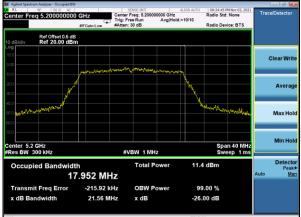
(802.11 n20) 26dB&99%Bandwidth plot on channel 40

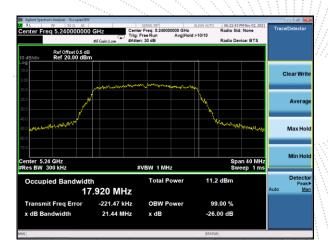




Test plot

(802.11 n40) 26dB&99%Bandwidth plot on channel 38


(802.11 n40) 26dB&99%Bandwidth plot on channel 46

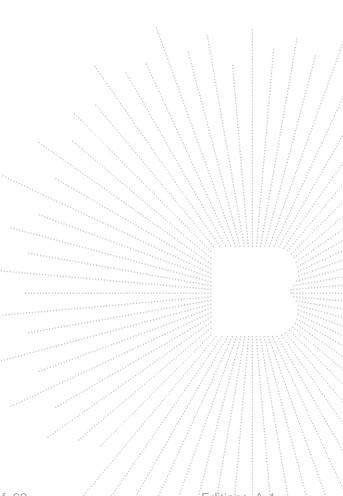

(802.11 AC20) - 26dB&99%Bandwidth plot on channel 36

(802.11 AC20) - 26dB&99%Bandwidth plot on channel 40

(802.11 AC20) -26dB&99%Bandwidth plot on channel 48

Test plot

(802.11 AC40) - 26dB&99% Bandwidth plot on channel 38



(802.11 AC40) - 26dB&99% Bandwidth plot on channel 46

RL	um Analyzer - Occu RF 50 Ω	AC	SENSE:INT		ALIGN AUTO		PM Nov 02, 2021		
Center Fre	eq 5.23000	0000 GHz #IFGain:Low	Center Freq: 5.2 Trig: Free Run #Atten: 30 dB	80000000 GHz Avg Hol	d:>10/10	Radio St Radio De	d: None vice: BTS	Trac	e/Detector
10 dB/div	Ref Offset Ref 20.00								
10.0 0.00									Clear Write
10.0	- /	and the second secon		and the second se	- 81 A 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	y y			
30.0	/					h.			Average
0.0 	wayhan'					^α th _b ,	*identherapyl		Max Hold
50.0								_	Max Hold
20.0 Center 5.2	3 647					Sn	an 60 MHz		Min Hold
Res BW			#VBW 3	MHz		Sw	eep 1 ms		
Occup	ied Band	width 36.431 M		l Power	13.7	dBm		Auto	Detector Peak
Transm	it Freq Err			Power	99	.00 %			
	ndwidth	40.79				00 dB			
150					STATUS				

(802.11 AC80) - 26dB&99% Bandwidth plot on channel 42

10. Maximum Conducted Output Power

10.1 Block Diagram Of Test Setup

10.2 Limit

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

10.3 Test Procedure

Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle \geq 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered

to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

10.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

10.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%				
Pressure :	101kPa	Test Voltage :	DC 9V				
Test Mode :	TX (5.1G) Mode Frequency U-I	X (5.1G) Mode Frequency U-NII-1 (5180-5240MHz)					

Test	Frequency	Maximum output power. Antenna port (AV)	LIMIT	Result
Channel	(MHz)	(dBm)	dBm	rtoodit
		TX 802.11a Mode		L
CH36	5180	11.590	23.98	Pass
CH40	5200	11.290	23.98	Pass
CH48	5240	10.671	23.98	Pass
		TX 802.11 n20M Mode		
CH36	5180	9.343	23.98	Pass
CH40	5200	9.268	23.98	Pass
CH48	5240	9.284	23.98	Pass
		TX 802.11 n40M Mode		
CH38	5190	8.226	23.98	Pass
CH46	5230	7.763	23.98	Pass
		TX 802.11 AC20M Mode		
CH36	5180	9.586	23.98	Pass
CH40	5200	9.041	23.98	Pass
CH48	5240	9.380	23.98	Pass
		TX 802.11 AC40M Mode		
CH38	5190	7.901	23.98	Pass
CH46	5230	6.905	23.98	Pass
	•	TX 802.11 AC80M Mode		
CH42	5210	7.828	23.98	Pass
	·			

11. Out Of Band Emissions

11.1 Block Diagram Of Test Setup

11.2 Limit

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

11.3 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect

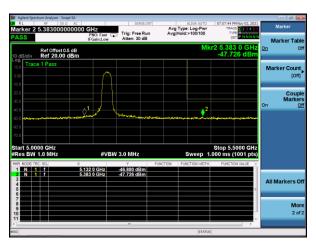
its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range. 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

5. Repeat above procedures until all measured frequencies were complete.

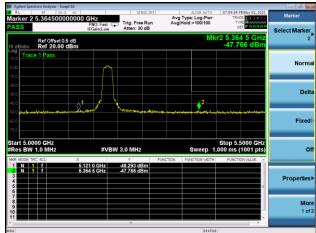
11.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data

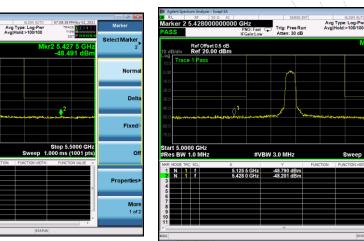

11.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 9V

5.1G


5.180~5.240 GHz

(802.11a) Band Edge, Left Side



(802.11a) Band Edge, Right Side

((802.11n20)	Band	Edae.	Left	Side
١	002.11120)	Dunu	Lugo,	LOIL	oluc

(802.11n20) Band Edge, Right Side

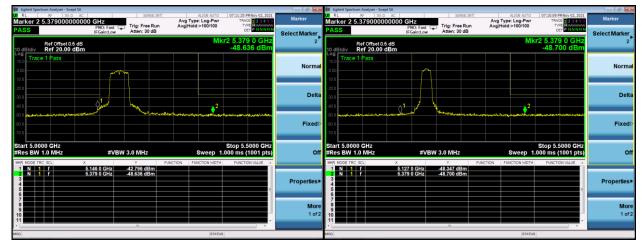
 Marker 2
 State 1
 For any set of the set of th

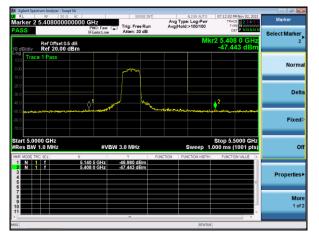
Del

Fixed

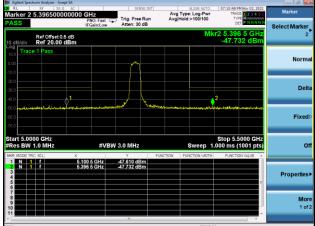
Mor 1 of

Prope


Stop 5.5000 GH


5.180~5.240 GHz

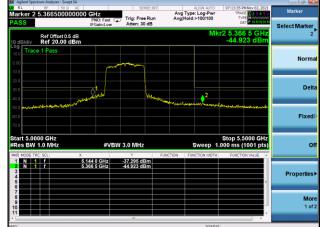
(802.11n40) Band Edge, Left Side

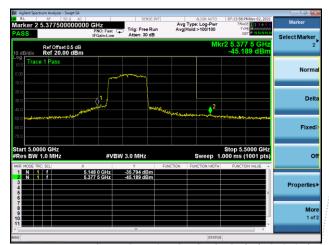

(802.11ac20) Band Edge, Left Side

(802.11n40) Band Edge, Right Side

(802.11ac20) Band Edge, Right Side

5.180~5.240 GHz


(802.11ac40) Band Edge, Left Side


(802.11ac40) Band Edge, Right Side

Agilent Spectrum Ana	lyzer - Swept SA		INT ALIGN AL	TO 07:13:07 PM Nov 02, 2021	
	3500000000 GHz		Avg Type: Log-P	Wr TRACE 123456	Marker
PASS	PNO: IFGair		Avginoid:>10010	DETPNNNN	Select Marker
10 dB/div Ref	offset 0.5 dB 20.00 dBm			Mkr2 5.428 5 GHz -47.883 dBm	2
10.0 0.00	ISS				Norma
20.0					
40.0		and a		2	Delta
50.0 	and a special and a special sp		" Maria and a share a	an a the Constant of the State of the Association of the State of the	
60.0 70.0					Fixed
Start 5.0000 GH Res BW 1.0 M		#VBW 3.0 MHz	Sweep	Stop 5.5000 GHz 1.000 ms (1001 pts)	or
MKR MODE TRC SCL	× 5.105 5 G	Hz -48.190 dBm	FUNCTION FUNCTION W	DTH FUNCTION VALUE *	
2 N 1 F 3 4 5 6	5.428 5 G	Hz -47.883 dBm			Properties >
7 8 9					More
10					1 of 2

(802.11ac80) Band Edge, Left Side

(802.11ac80) Band Edge, Right Side

12. Spurious RF Conducted Emissions

12.1 Block Diagram Of Test Setup

12.2 Limit

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2)For transmitters operating in the 5.725-5.85 GHz band(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

12.3 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

5. Repeat above procedures until all measured frequencies were complete,

12.4 Test Result

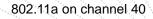
Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

About:26.5GHz-40GHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.1G Test Plot

802.11a on channel 36

802.11a on channel 36


802.11a on channel 40

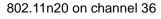
802.11a on channel 40

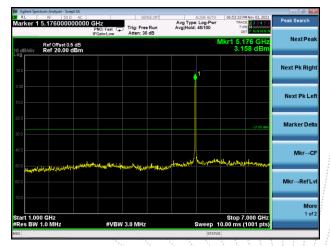
Edition: A.4

802.11a on channel 36

No.: BCTC/RF-EMC-005

Page: 47 of 62


Test Plot



802.11a on channel 48

802.11a on channel 48

Avg Type: Log-Pwr Avg Hold: 24/100 Book So er 1 5,191650 00 GHz PNO: Fast Trig: Free Run NextP Ref Offset 0.5 dB Ref 20.00 dBm Next Pk Rig Next Pk Le Marker Delt Mkr→C r→RefL More 1 of 3 VBW 3.0 MH

802.11n20 on channel 36

802.11a on channel 48

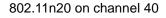
Page: 48 of 62

No.: BCTC/RF-EMC-005

802.11n20 on channel 36

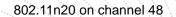
Edition: A.4




Test Plot

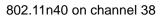
802.11n20 on channel 40

802.11n20 on channel 40



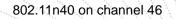
802.11n20 on channel 48

802.11n20 on channel 48

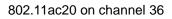

Test Plot

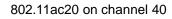
802.11n40 on channel 38

802.11n40 on channel 38



No.: BCTC/RF-EMC-005

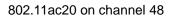

Test Plot


802.11ac20 on channel 36

802.11ac20 on channel 36

802.11ac20 on channel 40

802.11ac20 on channel 40


Test Plot

802.11ac20 on channel 48

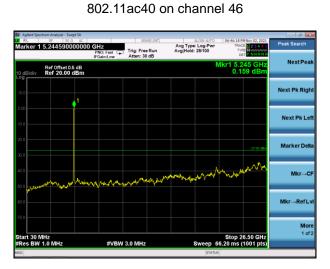
802.11ac20 on channel 48

802.11ac40 on channel 38

802.11ac40 on channel 38

802.11ac40 on channel 38

SA

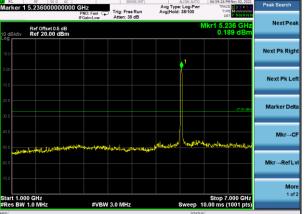

No.: BCTC/RF-EMC-005

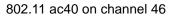
Edition: A.4

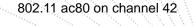
Test Plot

Peak Search




802.11 ac40 on channel 46


00000 GH


802.11 ac80 on channel 42

802.11ac80 on channel 42

No.: BCTC/RF-EMC-005

13. Frequency Stability Measurement

13.1 Block Diagram Of Test Setup

13.2 Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification)..

13.3 Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth

4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.

5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and he limit is less than ±20ppm (IEEE 802.11nspecification).

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

13.4 Test Result

Temperature :	26 ℃	Relative Humidity :	54%				
Pressure :	101kPa	Test Voltage :	DC 9V				
Test Mode :	TX Frequency U-NII-1 (5180-5240MHz)						

Voltage vs. Frequency Stability

				Re	eference Fre	quency:5180MI	Ηz										
	TE	ST CONDITIONS	3	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)										
-	20	V nom (V)	5.00	5180.0037	5180	0.0037	0.7215										
T nom (°C)		20	20	20	20	20	20	20	20	20	20	V max (V)	5.75	5180.0152	5180	0.0152	2.9439
(0)											V min (V)	4.25	5180.0110	5180	0.0110	2.1242	
Limits				5150-5250 MHz													
Result				Complies													

Temperature vs. Frequency Stability

				R	eference Fre	quency: 5180M	Ηz		
	TEST CON	DITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
		T (°C)	-20	5180.0126	5180	0.0126	2.4323		
		T (°C)	-10	5180.0025	5180	0.0025	0.4818		
		T (°C)	0	5180.0114	5180	0.0114	2.2006		
		T (°C)	10	5180.0085	5180	0.0085	1.6439		
V nom	DC 5V	T (°C)	20	5180.0093	5180	0.0093	1.7952		
(V)		T (°C)	30	5180.0077	5180	0.0077	1.4807		
		T (°C)	40	5180.0026	5180	0.0026	0.5075		
		T (°C)	50	5180.0088	5180	0.0088	1.7037		
		T (°C)	60	5180.0131	5180	0.0131	2.5225		
		T (°C)	70	5180.0055	5180	0.0055	1.0522		
	Limits			5150-5250 MHz					
Result			Complies						

Voltage vs. Frequency Stability

				Reference Frequency: 5200MHz						
	TE	EST CONDITION	3	f	fc	Max. Max. Deviation Deviatior (MHz) (ppm)				
-		V nom (V)	(V) 5.00 5200.0065	5200.0065	5200	0.0065	1.2548			
T nom (°C)	20	V max (V)	5.75	5200.0073	5200	0.0073	1.3958			
(0)					V min (V) 4		5200.0134	5200	0.0134	2.5817
Limits				5725-5850 MHz						
Result				Complies						

Temperature vs. Frequency Stability

				Reference Frequency: 5200MHz			
	TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5200.00924	5200	0.00924	1.7778
		T (°C)	-10	5200.00333	5200	0.00333	0.6404
		T (°C)	0	5200.00561	5200	0.00561	1.0787
	DC 5V	T (°C)	10	5200.00367	5200	0.00367	0.7048
V		T (°C)	20	5200.00824	5200	0.00824	1.5853
nom (V)	DC 5V	T (°C)	30	5200.00638	5200	0.00638	1.2267
()		T (°C)	40	5200.01041	5200	0.01041	2.0027
		T (°C)	50	5200.01203	5200	0.01203	2.3140
		T (°C)	60	5200.00527	5200	0.00527	1.0142
		T (°C)	70	5200.01125	5200	0.01125	2.1636
	Lim	iits			5150-	5250 MHz	
	Res	sult			Co	omplies	

Voltage vs. Frequency Stability

				Reference Frequency: 5240MHz				
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	5.00	5240.0028	5240	0.0028	0.5345	
		V max (V)	5.75	5240.0047	5240	0.0047	0.8890	
		V min (V)	4.25	5240.0066	5240	0.0066	1.2600	
Limits				5150-5250 MHz				
Result				Complies				

Temperature vs. Frequency Stability

				Reference Frequency: 5240MHz				
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	DC 5V	T (°C)	-20	5240.0022	5240	0.0022	0.4155	
		T (°C)	-10	5240.0114	5240	0.0114	2.1764	
		T (°C)	0	5240.0009	5240	0.0009	0.1811	
		T (°C)	10	5240.0076	5240	0.0076	1.4421	
		T (°C)	20	5240.0007	5240	0.0007	0.1317	
		T (°C)	30	5240.0090	5240	0.0090	1.7087	
		T (°C)	40	5240.0094	5240	0.0094	1.7901	
		T (°C)	50	5240.0035	5240	0.0035	0.6727	
		T (°C)	60	5240.0001	5240	0.0001	0.0111	
		T (°C)	70	5240.0097	5240	0.0097	1.8466	
Limits				5150-5250 MHz				
Result				Complies				

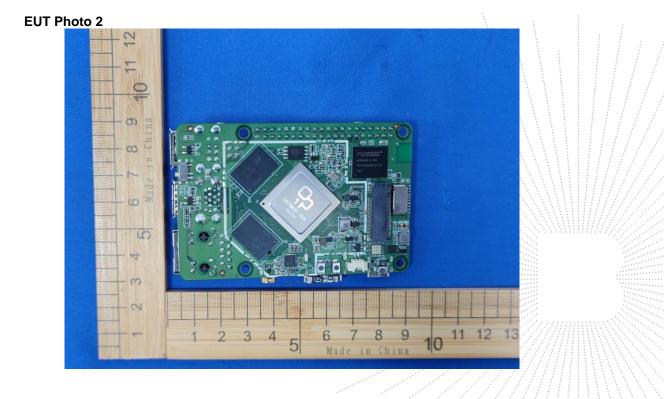
14. Antenna Requirement

14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2 EUT Antenna

The EUT antenna is Chip Antenna (antenna gain:2dBi). It comply with the standard requirement.


Edition: A.4

15. EUT Photographs

EUT Photo 1

16. EUT Test Setup Photographs


Conducted Measurement Photos

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page: 61 of 62

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6.The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

******** END *******

No.: BCTC/RF-EMC-005

Page: 62 of 62