
 http://www.rock-chips.com/

 1

Security Class: Top-Secret () Secret () Internal () Public (√)

Rockchip Trouble Shooting RKNN-Toolkit EN

(Technology Department, Graphic Display Platform Center)

Mark:

[] Editing

[√] Released

Version V1.2

Author HPC

Completed

Date

2019-10-11

Auditor Randall

Reviewed Date 2019-10-11

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd

(All rights reserved)

 http://www.rock-chips.com/

 2

Revision History

Version no. Author Revision Date Revision description Auditor

V0.9 HPC 2019-04-01 Initial version release Randall

V1.0 HPC 2019-07-18 Add some questions. Randall

V1.1 HPC 2019-08-22 Add some convolution acceleration tips Randall

V1.2 HPC 2019-10-11 Add some questions Randall

 http://www.rock-chips.com/

 3

Content

1. RKNN Toolkit usage related questions .. 4

2. Questions related with quantization accuracy .. 15

3. Common issues of Caffe model conversion .. 16

4. Common issues of Tensorflow model conversion ... 18

5. Common issues of Pytorch model conversion .. 19

6. RKNN convolution acceleration tips .. 19

 http://www.rock-chips.com/

 4

1. RKNN Toolkit usage related questions

1.1. Why does channel_mean_value of rknn.config function have 4 values?

If it is rgb image, does it still have 4 values?

channel-mean-value of rknn.config: used to set the preprocessing command line parameter.

It includes four values (M0 M1 M2 S0). The first three values are mean value parameters and the

last value is Scale parameter. If the input data have three channels (Cin0, Cin1, Cin2), the output

data will be (Cout0,Cout1, Cout2) after preprocessing. The calculating process is as below:

 Cout0 = (Cin0 - M0)/S0

 Cout1 = (Cin1 - M1)/S0

 Cout2 = (Cin2 - M2)/S0

For example, if need to formulate the input data into [-1, 1], you can set this parameter as

(128 128 128 128);

If need to formulate the input data into [0, 1], you can set this parameter as (0 0 0 255).

1.2. When the input image is gray picture with single channel, how to set

rknn.config interface?

Please refer to the answer of 1.1, when the input image is single channel, only ”Cout0 =

(Cin0 - M0)/S0” is used, so you can set as (M0, 0, 0, S0), while the values of M1 and M2 are not

used.

1.3. How to set scale parameter of rknn.config function? That is to

compress the input range into a certain scope, e.g. from (0-255) to

(0-1).

Refer to the answer of 1.1.

1.4. How to set “channel_mean_value” when input channel large than 3?

You don’t need to set channel_mean_value or reorder_channel. The default value of mean

will set to 0, scale will set to 1.

1.5. rknn.Inference() interface error or stuck happened after multiple

invoke

If the error log is similar as below:

 http://www.rock-chips.com/

 5

Please update RKNN Toolkit to 0.9.9 or higher version.

1.6. rknn.inference() inferring speed slow issue

This issue has two kinds of phenomenon:

1) The speed of forward inferring test is slow, and some picture may take over 0.5s while

testing mobilenet-ssd.

2) The time difference between model rknn.inference and rknn.eval_perf() is relatively big,

such as:

Theoretical computing time(single picture) 1.79ms 8.23ms 7.485ms 30.55ms

Actual computing time(single picture) 21.37ms 39.82ms 33.12ms 76.13ms

There are two reasons for the issue of slow measured frame rate:

1. Using the method of pc + adb to upload picture is quite slow, as it has high frame rate

requirement for network such as 1.79ms theoretically.

2. In the implementation of 0.9.8 and earlier, the inference included some extra time, and the

0.9.9 and later versions have been optimized.

For more real measured frame rate, you can directly use c/c++ api to test on the board.

 http://www.rock-chips.com/

 6

1.7. The first inference of RKNN Toolkit 0.9.9 version is very slow

RKNN Toolkit 0.9.9 version postpones the model loading to the first inference, so the first

inference is relatively slow. This issue has been resolved in versions 1.0.0 and later.

1.8. Fail to enable pre_compile=true when using RKNN Toolkit to convert

model on the development board

Arm64 version RKNN Toolkit doesn’t support pre_compile so far, if need to open

pre_compile, suggest to use x86 version RKNN Toolkit to do the conversion.

1.9. Returned outputs of YOLO forward test is [array1 , array2], the length

is [10140 , 40560], what is the meaning of the returned value?

The outputs returned by rknn.inference is a list of numpy ndarray, the size and quantity of

each model output data are different, users need to look up the corresponding output and

analytic rule of models by themselves.

1.10. RKNN Toolkit supported quantization method

RKNN supports two kinds of quantization mechanisms:

⚫ Quantization-aware training

Refer to Tensorflow quantization-aware training

(https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/quantize), which

requires user should have some re-training experience of fine tune. Use rknn.build

(do_quantization=False) after the quantized model is loaded through RKNN Toolkit, and now

RKNN Toolkit will use the own quantization parameter of the model, so there is no loss on the

quantization accuracy.

⚫ Post training quantization

When use this method, user loads the well-trained float point model, and RKNN Toolkit will

do the quantization according to the dataset provided by user. Dataset should try to cover as

many input type of model as possible. To make example simple, generally put only one picture.

Suggest to put more.

Currently RKNN Toolkit supports three kinds of quantization methods:

✓ asymmetric_quantized-u8（default）

This is the quantization method supported by tensorflow, which is also recommended by

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/quantize

 http://www.rock-chips.com/

 7

Google. According to the description in the article of Quantizing deep convolutional networks for

efficient inference: A whitepaper, the accuracy loss of this quantization method is the smallest for

most networks.

Its calculation formula is as follows：

 Where ‘quant’ represents the quantized number; ‘float_num’ represents float; data type of

‘scalse’ if float32; data type of ‘zero-points’ is int32, it represents the corresponding quantized

value when the real number is 0. Finally saturate ‘quant’ to [range_min, range_max].

 Currently only supports the inverse quantization of u8, the calculation formula is as follows:

✓ dynamic_fixed_point-8

For some models, the quantization accuracy of dynamic_fixed_point-8 is higher than

asymmetric_quantized-u8.

Its calculation formula is as follows：

 Where ‘quant’ represents the quantized number; ‘float_num’ represents float; ‘fl’ is the

number of digits shifted to the left. Finally saturate ‘quant’ to [range_min, range_max].

 If ‘bw’ equals 8, the range is [-127, 127].

✓ dynamic_fixed_point-16

The quantization formula of dynamic_fixed_point-16 is the same as dynamic_fixed_point-8,

except bw=16. For RK3399pro/RK1808, there is 300Gops int16 computing unit inside NPU, for

some quantized to 8 bit network with relatively high accuracy loss, you can consider to use this

https://arxiv.org/pdf/1806.08342
https://arxiv.org/pdf/1806.08342

 http://www.rock-chips.com/

 8

quantization method.

1.11. If do_quantization is False during model conversion, will it do

quantization? What is the quantization accuracy? (because the

model is nearly half the size after conversion)

There are two scenarios. When the loaded model is the quantized model,

do_quantization=False will use the quantization parameter of the model, for more details please

refer to the answer of 1.9. When the loaded model is the non-quantized model,

do_quantization=False will not do quantization, but will convert the weight from float32 to

float16, which will not cause accuracy loss.

1.12. When structure RKNN model(invoking build interface), set

do_quantization=False can build successfully, but set True will fail

to build

The error log is as below:

It is because there is no data in dataset.txt, or the data format is not supported. Recommend

to use jpg or npy.

1.13. “undefined symbol: PyFPE_jbuf” error occurs when install RKNN

Toolkit

The reason of the error is Python environment is not clean, for example, numpy is installed

 http://www.rock-chips.com/

 9

in two different paths. You can re-build a clean Python environment and try again.

1.14. “Permission Denied”error occurs when install RKNN Toolkit on

Toybrick

The reason is there is no root authority. Need to add ‘--user’ option for installation.

1.15. Does RKNN support model conversion with multiple inputs?

The RKNN Toolkit needs to be upgraded to version 1.2.0 or later.

1.16. What is the role of dataset during RKNN quantization? Why does

quantization need to relate to dataset?

During RKNN quantization, need to find appropriate quantization parameters, such as scale

or zero point. These quantization parameters should be selected according to the inference of the

actual input.

1.17. Does rknn.inference() support multiple pictures input at the same

time? Or support batch input?

The RKNN Toolkit needs to be upgraded to version 1.2.0 or later. And you need to specify the

number of input images when building the RKNN model. For detailed usage, refer to the

description of the build interface in <Rockchip_User_Guide_RKNN_Toolkit_V1.2.1_CN.pdf>.

1.18. When will it support to convert pytorch and mxnet model directly to

rknn?

The function of converting Pytorch directly to rknn is under developing. There is no plan for

mxnet so far.

1.19. Pre-compile model generated by RKNN Toolkit 0.9.9 can not run on

RK3399Pro which NPU driver version is 0.9.6.

Pre-compiled model generated by RKNN Toolkit 1.0.0 can not run on device installed old

driver (NPU driver version < 0.9.6), and pre-compiled model generated by old RKNN Toolkit

(version < 1.0.0) can not run on device installed new NPU driver (NPU drvier version == 0.9.6).

The driver version number can be queried through the get_sdk_version interface.

 http://www.rock-chips.com/

 10

1.20. When I load model, the numpy module raises error: Object arrays

cannot be loaded when allow pickle=False.

The error message is as follows：

This error is caused by the change in the default value of the allow_pickle parameter of the

load file interface after numpy is upgraded to 1.16.3. There are two solutions: one is to reduce

the numpy version to version 1.16.2 or lower; the other is to update RKNN Toolkit to version

1.0.0 or later.

1.21. When I call rknn_init(), it raises error:RKNN_ERR_MODEL_INVALID.

The error message is as follows：

Please make sure that the system version of the device is up to date.

1.22. When I call rknn_init(), it raises error:

RKNN_ERR_DEVICE_UNAVAILABLE.

The error message is as follows：

E RKNNAPI: rknn_init, driver open fail! ret = -9!

E Catch exception when init runtime!

T Traceback (most recent call last):

T File "rknn/api/rknn_base.py", line 617, in rknn.api.rknn_base.RKNNBase.init_runtime

T File "rknn/api/rknn_runtime.py", line 378, in rknn.api.rknn_runtime.RKNNRuntime.build_graph

T Exception: RKNN init failed. error code: RKNN_ERR_DEVICE_UNAVAILABLE

E RKNNAPI: rknn_init, msg_load_ack fail, ack = 1, expect 0!

E Catch exception when init runtime!

T Traceback (most recent call last):

T File "rknn/api/rknn_base.py", line 646, in rknn.api.rknn_base.RKNNBase.init_runtime

T File "rknn/api/rknn_runtime.py", line 378, in

rknn.api.rknn_runtime.RKNNRuntime.build_graph

T Exception: RKNN init failed. error code: RKNN_ERR_MODEL_INVALID

 http://www.rock-chips.com/

 11

Please check it out as follows:

1) Make sure that the RKNN Toolkit and the firmware of devices have been upgraded to the latest

version. The correspondence between each version of the RKNN Toolkit and the components of

the system firmware is as follows：

RKNN Toolkit rknn_server NPU Driver librknn_runtime

1.0.0 0.9.6/0.9.7 6.3.3.2, 22133405 0.9.8/0.9.9

1.1.0 0.9.8 6.3.3.2, 28225a 1.0.0

1.2.0 0.9.9 6.4.0, 67399c4 1.1.0

1.2.1 1.2.0 6.4.0, 5c7e2cbd 1.2.0

The version of these components is queried on RK1808 as follows：

execute these commands on RK1808

dmesg | grep -i galcore # Query the NPU driver version

strings /usr/bin/rknn_server | grep build # Query the rknn_server version

strings /usr/lib/librknn_runtime.so | grep version # Query the librknn_runtime version

The version information can also be queried through the get_sdk_version interface, where the

DRV version corresponds to the version of rknn_server.

2) Make sure the “adb devices” command can get the device, and the target and device_id

settings of rknn.init_runtime() are correct.

3) If you use RKNN Toolkit 1.1.0 and above, make sure rknn.list_devices() can get the devices list.

4) If you are using a compute stick or NTB mode for the RK1808 EVB version, make sure you have

called update_rk1808_usb_rule.sh (contained in the RKNN Toolkit distribution) to get read and

write access to the USB device.

5) If you are running the AARCH64 version of the RKNN Toolkit directly on the

RK3399/RK3399Pro, make sure the system firmware has been upgraded to the latest version.

1.23. When calling rknn.build() with pre_compile=True, it raises an error,

it can be successful if it is not set.

The error message is as follows：

E Catch exception when building RKNN model!

T Traceback (most recent call last):

T File "rknn/api/rknn_base.py", line 515, in rknn.api.rknn_base.RKNNBase.build

 http://www.rock-chips.com/

 12

T File "rknn/api/rknn_base.py", line 439, in rknn.api.rknn_base.RKNNBase._build

T File "rknn/base/ovxconfiggenerator.py", line 187, in

rknn.base.ovxconfiggenerator.generate_vx_config_from_files

T File "rknn/base/RKNNlib/app/exporter/ovxlib_case/casegenerator.py", line 380, in

rknn.base.RKNNlib.app.exporter.ovxlib_case.casegenerator.CaseGenerator.generate

T File "rknn/base/RKNNlib/app/exporter/ovxlib_case/casegenerator.py", line 352, in

rknn.base.RKNNlib.app.exporter.ovxlib_case.casegenerator.CaseGenerator._gen_special_case

T File "rknn/base/RKNNlib/app/exporter/ovxlib_case/casegenerator.py", line 330, in

rknn.base.RKNNlib.app.exporter.ovxlib_case.casegenerator.CaseGenerator._gen_nb_file

T AttributeError: 'CaseGenerator' object has no attribute 'nbg_graph_file_path'

Please confirm:

1) The system is equipped with the gcc compiler toolchain

2) The name of the model only contains “letters”, “numbers”, “_”.

1.24. Upgraded to RKNN Toolkit 1.2.0, there are 200 pictures in dataset.txt,

but quantitative correction is quickly completed. The accuracy of

the rknn model is very low. Are these pictures used for quantitative

correction?

RKNN Toolkit 1.2.0 adjusts the default value of batch_size in config interface. In this version,

if you want to use multiple pictures for quantization correction, the value of this parameter

should be set to the corresponding number of pictures. If this value is set too large, it may cause

program exceptions due to exhaustion of system memory. In this situation, you need to upgrade

to version 1.2.1 or later. In version 1.2.1, the default value of batch_size is restored to 100, and

multiple quantization correction can be achieved with epochs parameter. The number of images

used for quantization correction is the product of batch_size and epochs. For example, if there

are 200 pictures in the dataset file, then batch_size is set to 100, epochs is set to 2, or batch_size

is set to 200, and epochs is set to 1, all of which can achieve the quantization correction of 200

pictures. But the memory usage peak of theformer is lower than that of the latter. If you only

want to use 100 of them, you can set batch_size to 100 and epochs to 1.

 http://www.rock-chips.com/

 13

1.25. The shape of numpy array in dataset is (4, 640, 480), but when

building quantized rknn model, the log prompts shape (640, 480,

480), then build failure.

When using numpy array for quantization correction, if it is a three-dimensional array, it

needs to be arranged in the order of ‘whc’.

1.26. Is the size of the image used for quantization correction the same as

the size of the model input?

Not required. RKNN Toolkit automatically scales images. Howerver, because zooming can

change the image information, it may have some impact on the accuracy, so it is better to use

pictures of similar size.

1.27. When using the RKNN Toolkit, if the logging module is used in the

program to output the log, it will report an error and exit.

It has been fixed in RKNN Toolkit 1.2.1, please upgrade to it.

1.28. Upgraded to RKNN Toolkit 1.2.0，after calling load_xxx interfaces,

the program exits directly without any log.

The message is as follows：

New environment variables ("PYTHONLEGACYWINDOWSSTDIO") are required when using

RKNN Toolkit 1.2.0 on Windows systems, and it should be set with value of 1.

It can also be upgraded to RKNN Toolkit 1.2.1 and later versions, which do not require

manual setting of the environment variables.

 http://www.rock-chips.com/

 14

1.29. What deep learning framework does the RKNN Toolkit support?

Whether to support all versions of these deep learning frameworks?

Deep learning frameworks supported by the RKNN Toolkit include TensorFlow, TensorFlow

Lite, Caffe, ONNX and Darknet.

It corresponds to the version of each deep learning framework as follows:

RKNN Toolkit TensorFlow TF Lite Caffe ONNX Darknet

1.0.0 >=1.10.0,

<=1.13.2

Schema

version = 3

1.0 Release

version 1.3.0

Latest commit：

810d7f7

1.1.0 >=1.10.0,

<=1.13.2

Schema

version = 3

1.0 Release

version 1.3.0

Latest commit：

810d7f7

1.2.0 >=1.10.0,

<=1.13.2

Schema

version = 3

1.0 Release

version 1.3.0

Latest commit：

810d7f7

1.2.1 >=1.10.0,

<=1.13.2

Schema

version = 3

1.0 Release

version 1.3.0

Latest commit：

810d7f7

Note:

1. In compliance with semver, SavedModels written with one version of TensorFlow can

be loaded and evaluated with a later version of TensorFlow with the same major

release. So in theory, the pb file generated by TensorFlow before version 1.14.0, RKNN

Toolkit 1.0.0 and later are supported. For more information on TensorFlow version

compatibility, please refer to the official link:

https://www.tensorflow.org/guide/versions

2. RKNN Toolkit uses the TF Lite schema commits in link:

https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/sc

hema.fbs

Commit hash: 0c4f5dfea4ceb3d7c0b46fc04828420a344f7598.

Because TF Lite schema may not compatible with each other, TF Lite models with older

or newer schema may not be loaded successfully.

3. There are two caffe protocols RKNN Toolkit uses, one based on the officially modified

protocol of berkeley, and one based on the protocol containing the LSTM layer. The

protocol based on the official revision of berkeley comes from this link:

https://github.com/BVLC/caffe/tree/master/src/caffe/proto, commit hash is 21d0608.

On this basis RKNN Toolkit have added some OPs. The protocol containing the LSTM

layer refers to: https://github.com/xmfbit/warpctc-caffe/tree/master/src/caffe/proto,

commit hash is bd6181b. These two protocols are specified by the proto parameter in

the load_caffe interface.

4. The relationship between ONNX release version and opset version, IR version refers to

the official website description:

https://github.com/microsoft/onnxruntime/blob/master/docs/Versioning.md

ONNX release version ONNX opset version Supported ONNX IR version

1.3.0 8 3

1.4.1 9 3

5. Darknet official Github link: https://github.com/pjreddie/darknet. Our current

https://www.tensorflow.org/guide/versions
https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
https://github.com/BVLC/caffe/tree/master/src/caffe/proto
https://github.com/xmfbit/warpctc-caffe/tree/master/src/caffe/proto
https://github.com/microsoft/onnxruntime/blob/master/docs/Versioning.md
https://github.com/pjreddie/darknet

 http://www.rock-chips.com/

 15

conversion rules are based on the latest commit of the master branch (commit value:

810d7f7).

2. Questions related with quantization accuracy

2.1. The accuracy doesn’t match with original model after quantization,

how to debug?

➢ Firstly make sure the accuracy of float type is similar to test result of original platform:

(1) Make rknn.build(do_quantization=False) when the quantized model is loaded by RKNN

Toolkit.

(2) Refer to 1.1 to set channel_mean_value parameter, which should be same as the

parameter used for training model.

(3) Make sure the sequence of the input image channel must be R,G,B while testing.

(Whatever the sequence of the image channel is used for training, it must be input by

R,G,B while using RKNN to do testing)

(4) Set reorder_channel parameter in rknn.config function, ’0 1 2’ stands for RBG, ’2 1 0’

stands for BGR, and it must be consistent with the sequence of the image channel used

for training.

➢ Accuracy test after quantization

(1) Use multiple pictures to do quantization, to ensure the stability of quantization accuracy.

Set batch_size parameter in rknn.config (recommend to set batch_size = 200) and provide

more than 200 images path in dataset.txt for quantization.

If the display memory is not enough, you can set batch_size =1, epochs=200 instead of

batch_size = 200 for quantization.

(2) Accuracy comparison, try to use relatively big data set to do testing. Compare the

accuracy of top-1, top-5 for classifying network, compare mAP, Recall of data set for checking

network, and so on.

2.2. How to dump the output of each layer of network

Currently PC simulator supports to dump out data of each layer of network. Need to set an

environment variable before executing inference script. The command is as below:

 http://www.rock-chips.com/

 16

export NN_LAYER_DUMP=1

python xxx.py

After execution, tensor data file of each layer of network will be generated in current

directory, and then you can compare with data of other framework layer by layer.

Note, some layers may be combined, for example, conv+bn+scale may be combined into one

conv, in this case, need to compare with output of scale layer of the original model.

2.3. Which frameworks` quantized model are currently supported by the

RKNN Toolkit?

The RKNN Toolkit currently supports quantized models of the two frameworks TensorFlow

and TensorFlow Lite.

3. Common issues of Caffe model conversion

3.1. “ Deprecated caffe input usage ” error occurs during model

conversion

It means this model is old version of caffe mode. Need to change input layer into below

format.

layer {

 name: "data"

 type: "Input"

 top: "data"

 input_param {

 shape {

 dim: 1

 dim: 3

 dim: 224

 dim: 224

 }

 }

}

3.2. “Message type "caffe.PoolingParameter" has no field named

"round_mode"”error occurs during model conversion

round_mode field of Pool layer cannot be recognized, you can change it to ceil_model. For

example, if originally it is round_mode: CEIL, then you can delete (ceil_mode is True by default)

or change to ceil_mode:True.

 http://www.rock-chips.com/

 17

3.3. “ValueError("'%s' is not a valid scope name" % name)” error occurs

during caffe or other model conversion

The detailed error log is as below:

T raise ValueError("'%s' is not a valid scope name" % name)

T ValueError: '_plus0_17' is not a valid scope name

In this case, it is because layer name '_plusxxx' is not allowed to use _ at the beginning.

Need to follow the naming rule of tensorflow:

[A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root)

[A-Za-z0-9_.\\-/]* (for other scopes)

3.4. “Invalid tensor id(1), tensor(@mbox_conf_flatten_188:out0)”error

occurs when Caffe version SSD conversion fails

Not support detectionoutput layer, you can delete and then change to CPU.

3.5. There should be three output tensor after Caffe version SSD model

deletes detectionoutput, but actually only return two tensor by

RKNN inference

The missing tensor is priori box. It is the same during training and inference stage, and for all

inputs. In order to improve performance, RKNN Toolkit optimized the relative layer in the model.

If want to get the tensor of priori box, you can save the tensor of priori box, or use Caffe to do

inference once in training stage.

3.6. “ValueError: Invalid tensor id(1), tensor(@rpn_bbox_pred_18:out0)”

error occurs during py-faster-rcnn model conversion

Comparing with official code, need to change 'proposal' layer of prototxt as below:

layer {

 name: 'proposal'

 type: 'proposal'

https://github.com/rbgirshick/py-faster-rcnn

 http://www.rock-chips.com/

 18

 bottom: 'rpn_cls_prob_reshape'

 bottom: 'rpn_bbox_pred'

 top: 'rois'

 top: 'scores'

 proposal_param {

 ratio: 0.5 ratio: 1.0 ratio: 2.0

 scale: 8 scale: 16 scale: 32

 base_size: 16

 feat_stride: 16

 pre_nms_topn: 6000

 post_nms_topn: 300

 nms_thresh: 0.7

 min_size: 16

 }

}

3.7. “E Not supported caffenet model version(v0 layer or v1 layer)”error

occurs during model conversion

The main reason is that the version of the caffe model is too old and needs to be updated. The

update method is as follows (take VGG16 as an example):

1) Download Caffe source code from https://github.com/BVLC/caffe.git

2) Compile Caffe

3) Convert the model to a new format

 ./build_release/tools/upgrade_net_proto_text vgg16_old/vgg16.prototxt vgg1

6_new/vgg16.prototxt

 ./build_release/tools/upgrade_net_proto_binary vgg16_old/vgg16.caffemodel vgg16_ne

w/vgg16.caffemodel

4. Common issues of Tensorflow model conversion

4.1. “AttributeError: ‘NoneType’ object has no attribute op”error occurs

during Google official ssd_mobilenet_v2 model conversion

One possible reason is that input node is not correct. You can modify as below:

 http://www.rock-chips.com/

 19

rknn.load_tensorflow(tf_pb='./ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb',

 inputs=['FeatureExtractor/MobilenetV2/MobilenetV2/input'],

 outputs=['concat', 'concat_1'],

 input_size_list=[[INPUT_SIZE, INPUT_SIZE, 3]])

4.2. “Cannot convert value dtype ([‘resource’, ‘u1’]) to a Tensorflow

Dtype”error occurs during SSD_Resnet50_v1_FPN_640x640 model

conversion

Need to update RKNN Toolkit to version 0.9.8 or higher.

4.3. On RKNN Toolkit 1.0.0，is the output shape of RKNN model converted

from TensorFlow changed?

Versions prior to 1.0.0 will convert output shape from "NHWC" to "NCHW". Starting from

this version, the shape of the output will be consistent with the original model, and no longer

convert from "NHWC" to "NCHW". Please pay attention to the location of the channel when

performing post processing.

5. Common issues of Pytorch model conversion

Currently RKNN Toolkit indirectly supports pytorch through ONNX, so need to convert

pytorch to ONNX first. If issue occurs during conversion, please update RKNN Toolkit to the latest

version first.

5.1. “assert(tsr.op_type == 'Constant')”error occurs during conversion

This issue is introduced after pytorch 0.4.5 version. In your model, if there is something like

“x = x.view(x.size(0), -1)”, need to change to “x = x.view(int(x.size(0)), -1)”.

6. RKNN convolution acceleration tips

6.1. How to design a convolutional neural network to achieve optimal

performance on RKNN

Here are some suggestions from us：

1. Optimal Kernel Size is 3x3

 http://www.rock-chips.com/

 20

Convolution cores can support a large range of kernel sizes. The minimum supported

kernel size is [1] and maximum is [11 * stride - 1].

The NN Engine performs most optimally when the Convolution kernel size is 3x3, under

which the highest MAC utilization can be achieved.

Non-square kernels are also supported, but with some computation overhead.

2. Fused Operations Reduce Overhead

The Convolution core can fuse ReLU and MAX Pooling operations on the fly to further

reduce computation and bandwidth overhead. A ReLU layer following a Convolution layer

will always be fused, while MAX pooling layer fusion has the following restrictions, Max

pooling must

- have a pool size of 3x3 or 2x2, and stride of 2

- 2x2 pooling must have an even input size and no padding

- 3x3 pooling must have odd input size which is not one and no padding

- Horizontal input size must be less than 64 (8-bit mode) or 32 (16-bit mode) if pool size is

3x3

3. Depthwise Convolutions

Both regular 2D and Depthwise convolutions are supported, while 2D convolutions

perform more optimally. Since Depthiwise Convolution-specific structure makes it less

friendly to quantized model. It`s recommend to use 2D convolution whenever possible when

 http://www.rock-chips.com/

 21

designing your network.

If you must use a Depthwise convolution, it`s recommend to follow the rules below that

can improve the accuracy of the quantized model:

- Change the activation function RELU6 to RELU.

- Remove the BN layer and activation layer of the Depthwise convolution layer.

- In training, for the Depthwise convolutional layer, L2 regularization of its weight.

4. Output channel number setting

It`s recommend to set the number of convolution output channels to be a multiple of the

number of convolution kernels in the NPU to ensure that all convolution kernels are better

utilized for higher hardware utilization.

5. Take advantage of Hardware’s Sparse Matrix Support

Modern Neural-Networks are known to be over parameterized and have much

redundancy in their design. Pruning a network to be sparse has been proven to reduce

computation overhead while maintaining accuracy.

RKNN hardware is designed to support sparse matrix operations efficiently by skipping

 http://www.rock-chips.com/

 22

computations and memory fetches on zero values. The sparsity level can be fine grain down

to individual weights. Designing a sparse network to take advantage of this technology could

further improve performance on RKNN.

	1. RKNN Toolkit usage related questions
	1.1. Why does channel_mean_value of rknn.config function have 4 values? If it is rgb image, does it still have 4 values?
	1.2. When the input image is gray picture with single channel, how to set rknn.config interface?
	1.3. How to set scale parameter of rknn.config function? That is to compress the input range into a certain scope, e.g. from (0-255) to (0-1).
	1.4. How to set “channel_mean_value” when input channel large than 3?
	1.5. rknn.Inference() interface error or stuck happened after multiple invoke
	1.6. rknn.inference() inferring speed slow issue
	1.7. The first inference of RKNN Toolkit 0.9.9 version is very slow
	1.8. Fail to enable pre_compile=true when using RKNN Toolkit to convert model on the development board
	1.9. Returned outputs of YOLO forward test is [array1 , array2], the length is [10140 , 40560], what is the meaning of the returned value?
	1.10. RKNN Toolkit supported quantization method
	1.11. If do_quantization is False during model conversion, will it do quantization? What is the quantization accuracy? (because the model is nearly half the size after conversion)
	1.12. When structure RKNN model(invoking build interface), set do_quantization=False can build successfully, but set True will fail to build
	1.13. “undefined symbol: PyFPE_jbuf” error occurs when install RKNN Toolkit
	1.14. “Permission Denied”error occurs when install RKNN Toolkit on Toybrick
	1.15. Does RKNN support model conversion with multiple inputs?
	1.16. What is the role of dataset during RKNN quantization? Why does quantization need to relate to dataset?
	1.17. Does rknn.inference() support multiple pictures input at the same time? Or support batch input?
	1.18. When will it support to convert pytorch and mxnet model directly to rknn?
	1.19. Pre-compile model generated by RKNN Toolkit 0.9.9 can not run on RK3399Pro which NPU driver version is 0.9.6.
	1.20. When I load model, the numpy module raises error: Object arrays cannot be loaded when allow pickle=False.
	1.21. When I call rknn_init(), it raises error:RKNN_ERR_MODEL_INVALID.
	1.22. When I call rknn_init(), it raises error: RKNN_ERR_DEVICE_UNAVAILABLE.
	1.23. When calling rknn.build() with pre_compile=True, it raises an error, it can be successful if it is not set.
	1.24. Upgraded to RKNN Toolkit 1.2.0, there are 200 pictures in dataset.txt, but quantitative correction is quickly completed. The accuracy of the rknn model is very low. Are these pictures used for quantitative correction?
	1.25. The shape of numpy array in dataset is (4, 640, 480), but when building quantized rknn model, the log prompts shape (640, 480, 480), then build failure.
	1.26. Is the size of the image used for quantization correction the same as the size of the model input?
	1.27. When using the RKNN Toolkit, if the logging module is used in the program to output the log, it will report an error and exit.
	1.28. Upgraded to RKNN Toolkit 1.2.0，after calling load_xxx interfaces, the program exits directly without any log.
	1.29. What deep learning framework does the RKNN Toolkit support? Whether to support all versions of these deep learning frameworks?

	2. Questions related with quantization accuracy
	2.1. The accuracy doesn’t match with original model after quantization, how to debug?
	2.2. How to dump the output of each layer of network
	2.3. Which frameworks` quantized model are currently supported by the RKNN Toolkit?

	3. Common issues of Caffe model conversion
	3.1. “Deprecated caffe input usage”error occurs during model conversion
	3.2. “Message type "caffe.PoolingParameter" has no field named "round_mode"”error occurs during model conversion
	3.3. “ValueError("'%s' is not a valid scope name" % name)” error occurs during caffe or other model conversion
	3.4. “Invalid tensor id(1), tensor(@mbox_conf_flatten_188:out0)”error occurs when Caffe version SSD conversion fails
	3.5. There should be three output tensor after Caffe version SSD model deletes detectionoutput, but actually only return two tensor by RKNN inference
	3.6. “ValueError: Invalid tensor id(1), tensor(@rpn_bbox_pred_18:out0)”error occurs during py-faster-rcnn model conversion
	3.7. “E Not supported caffenet model version(v0 layer or v1 layer)”error occurs during model conversion

	4. Common issues of Tensorflow model conversion
	4.1. “AttributeError: ‘NoneType’ object has no attribute op”error occurs during Google official ssd_mobilenet_v2 model conversion
	4.2. “Cannot convert value dtype ([‘resource’, ‘u1’]) to a Tensorflow Dtype”error occurs during SSD_Resnet50_v1_FPN_640x640 model conversion
	4.3. On RKNN Toolkit 1.0.0，is the output shape of RKNN model converted from TensorFlow changed?

	5. Common issues of Pytorch model conversion
	5.1. “assert(tsr.op_type == 'Constant')”error occurs during conversion

	6. RKNN convolution acceleration tips
	6.1. How to design a convolutional neural network to achieve optimal performance on RKNN

