Rackchip

BT www.rock-chips.com

Classification Level: Top Secret () Secret () Internal () Public (V)

Rockchip User Guide RKNN API V1.2.0 E
N

(Technology Department, Graphic Display Platform Center)

Mark: Version V1.2.0

[] Editing Author Kevin Du

[V] Released Completed Date | 2019-09-17

Reviewer Randall

Reviewed Date 2019-09-17

@I F IR BIRAT
Fuzhou Rockchip Electronics Co., Ltd.

(Copyright Reserved)

Rackchip

ST

www.rock-chips.com

Revision History

V0.9.1 Kevin Du 2018-11-27 | Initial release. Randall
Mainly modify the API definition of input and

v0.9.2 Kevin Du 2018-12-19 Randall
output.

V0.9.3 Kevin Du 2019-01-24 | Add API migration instruction from v0.9.1 to v0.9.2. Randall

v0.9.4 Kevin Du 2019-03-11 | Fix the issue that channel mean is not in effect. Randall

v0.9.6 Kevin Du 2019-05-14 | Add rknn_init2 Function. Randall

v0.9.7 Kevin Du 2019-06-13 | Add x86 linux support. Randall
1. Update Linux X86 Demo section.

v0.9.8 Kevin Du 2019-06-26 | 2. Add support of rknn_batch_size > 1. Randall
3. Add query function of the devices ID list.
1. Add support of multi-input

v0.9.9 Kevin Du 2019-07-16 | 2. Fix inference error when input channel > 3 Randall
3. Modify the name of document

V1.2.0 Kevin Du 2019-09-17 | Unified Version to V1.2.0 Randall

Rackchip

BT www.rock-chips.com

Table of Contents

1 OVERVIEW 4
2 SYSTEM DEPENDENCIES DESCRIPTION 4
2.1 LINUX PLATFORM DEPENDENCIES........cccittttieeiiittiieeeeeeittteeeeeeiuteeeeeesessseeesesesseseeeeeassssesessessssssaseessssssseeessnsees 4
2.2 ANDROID PLATFORM DEPENDENCIES.......coiiiiiiiiiiiiiiiiiiiitii ittt 4

3 API INSTRUCTIONS 4
3.1 RN APT DETAILLS.ttttitetetetetesteetestestesteseeseesessessessessessansassansensaneasseseaseaseesesssssessessessensansensansensensaneenens 5
311 PR G0t & PRI GRIE2 ..ottt ettt teas 5
3012 PRI _A@SIOY ...ttt ettt a et ae ettt e e 7

3o L3 FRIRL _QUETY ..ot ettt ettt e ab ettt et e e tee e eteas 7

3. L4 FRIR_IIPDULS S@L......voeeeeeeeie ettt ettt ettt et e ht e et e et e e aeeenb e e st e enbe e teeenbeeaee s 11
0L 5 FRIUR FUR ..ottt ettt ettt a et ee e ne e enean 12

3. 1.6 PRI OUIDULS GClL.....ooeeeeee ettt et ettt ettt et e sttt e et e et e sab e e st e sebeenbeesebeenseeenseennes 12

3.1 7 FRIR_OUIDULS FOLEASE. ..ottt ettt ea et ee e e eae s 14

3 L8 PRI fINA AEVICES..........cceeei ettt 15

3.2 RKNN DATA STRUCTURE DEFINITION.cviiiiiiiiiiiiiiiiiiiiiiiiiiincsesc s 15

3. 2.1 PRRR_IAPUE OUIDUE UM c.....o.eeeiee ettt ettt ettt et et e et eseesaeenseaneens 15
3.2.2 FRIR_EEISOT QLTc.eeee ettt ettt ettt ettt et e e et et e s et e st e e st e enteeenbeenbeesnbeeneeenbean 15

3. 2.3 FRIRL_I-PDUL. ..ottt et ettt ettt ettt et e et e ettt e eneennrean 17
3204 FRII_OUIDUL ...t ettt ettt ettt ettt ettt et n e ene e anean 18

3. 2.5 PRI _POIS AOIALL..........c.oocoeeieiieiieieeee ettt ettt 18

3. 2.0 FRII_D@IT FUM ..ot ettt ettt ettt ettt e ettt e et a et b et nes 19

3. 2.7 FRIR_TREE_@XEEI. ...ttt ettt a ettt et ae e 19

3. 2.8 FRIR_FURN_@XTENA. ...ttt ettt ettt et ettt ettt eab e et eteas 19

3. 2.9 FRIR_OUIPUE @XTENU..........ce ittt ettt ettt ettt n e 20

Rackchip

BT www.rock-chips.com
3. 2,10 FAIN_SAK VO STON........oooueiiieeieeeie ettt ettt sttt e ettt e et e e bt e sabeeseesabeenseesnneenes 20
32,11 FRIN_d@VICES IAl......c..ooieieeee et 21
32,12 EFFOVF COUE. ..ottt ettt et ettt et et e et et e et e eabeeree e 21
3.3 RKNN API BASIC CALL FLOW.....iiitiiiiiiiiiiiieniteieetett ettt sttt ettt saees 21
4 DEMO INSTRUCTIONS 28
4.1 LINUX ARM DEMO.....cutiiiiiiiiiiiiitee ettt ettt sttt sttt ettt et et sbe et b e e 28
4. 1.1 COMPILALION INSIFUCIIONS.c..eeeeee ettt ettt ettt et e st e bt e st e e ateense e teesnseeseesnbeaseesaseans 28
G 1.2 RUI INSIPUCHIONS. ..ottt et et e e e at e e et e e e tb e e aeabeaeensbeeensseeesseeennseas 28
4.2 LINUX X860 DEMO.....c..eioiiiiiiiiiiieeteitete ettt ettt sttt ettt st sa ettt sbe et s bt et eae et st enbeemeenaeenees 29
4.2.1 Compilation INSIUCHIONS.c.ciueiaueee ettt ettt ettt ettt ettt et ettt e bt enee et aneeaneenaens 29
4. 2.2 RUN INSIPUCHIONS. ..ottt e ettt e ettt e e e st e e et e e e tbeeaeabaeeensbeeentbeaesseeennseas 30
4.3 ANDROID DEMO.....cutiiiiiiiiiiiiitetene ettt ettt ettt ettt et sa ettt st sbt et sbe et e ste et sbte bt eaae st enee 31
4.3.1 Compilation INSIUCHIONS.cccueieueee ettt ettt ettt ettt et e bt e bt eneeseeaneesneeneeas 31
4.3.2 RUTN INSTPUCTIONS ..ottt ettt ettt ettt ekt e et et eeaa e et eente e ateenbeeesteenseessseenseenseenn 32
5 APPENDIX 33
5.1 API MIGRATION INSTRUGCTIONS......uvutittiiiiieieeeeeeeeeeeeeeeesesesssssssssaeeeseeeeeeeeeeeaeeeeeeesesesasassssssssssrsressereereeeeeeeeeees 33

Rackchip

WMET www.rock-chips.com

1 Overview

The RKNN API is an NPU(Neural Network Unit) acceleration interface based on Linux/Android. It
provides general acceleration support for Al related applications.

This manual mainly consists of three parts.

1) RKNN API: Detailed API definition and instructions for using.

2) Linux Demo: Compile the Mobilenet classifier demo and SSD object detection demo on the

Linux platform using hardware acceleration.

3) Android Demo: Compile the SSD object detection demo on the Android platform using

hardware acceleration.

2 System Dependencies Description

2.1 Linux Platform Dependencies

This Linux Arm version of API SDK is developed based on RK3399Pro 64-bit Linux, needs to be
used on 64-bit Linux Arm system.

This Linux X86 version of API SDK is developed based on X86 Ubunutl16.04 64-bit, needs to be
used on X86 64-bit Linux system. E.g. Ubuntul6.04 64-bit X86 PC, and need make ensuring that

RK 1808 is connected to the PC via USB.

2.2 Android Platform Dependencies

This Android version of API SDK is developed based on RK3399Pro AndroidS8.1, needs to be used

on Android8.1 system or higher.

3 API Instructions

RKNN API is a set of application programming interfaces (APIs) that based on NPU hardware
acceleration, developers can use this API to develop Al related applications, the API will call the NPU

hardware accelerator.

Rackchip

WMET www.rock-chips.com

Currently the RKNN API on the Linux and Android platforms are the same.
On the Linux platform, The API SDK provides two demos that use RKNN API, one is image
classifier demo based on MobileNet model, the other is object detection demo based on SSD model.

On the Android platform, The API SDK provides one object detection demo based on SSD model.

3.1 RKNN API Details

RKNN API is a set of generic APIs designed by Rockchip for NPU hardware accelerator. This API
need to be used in conjunction with RKNN-Toolkit provided by Rockchip. The RKNN-Toolkit can
convert common model formats into RKNN models, such as TensorFlow models, Caffe models, etc.

A detailed description of the RKNN-Toolkit can be found in the <RKNN-Toolkit User Guide>.

The RKNN-Toolkit can generate a model file with the rknn suffix, such as mobilenet vI-tf.rknn.

On the Linux platform, enter the <rknn-api>/Linux/rknn_api_sdk directory, the API definition is in
<rknn_api_sdk>/rknn_api/include/vknn_api.h, and the dynamic library path of RKNN API is
<rknn_api_sdk>/rknn_api/lib(64)/librknn_api.so. Users only need to use the header file and dynamic
library in the Al application.

On the Android platform, enter the <rknn-api>/Android/rknn_api directory, the API definition is in
<rknn_api>/include/rknn_api, the dynamic library path of RKNN API is
<rknn_api>/lib(64)/librknn_api.so. Users only need to use the header file and dynamic library in the JNI

library of the Al application. Currently, only JNI development methods are supported on Android.

The following section is a description of RKNN API.

3.1.1 rknn_init & rknn_init2

API int rknn_init(rknn_context* context, void* model, uint32_t size, uint32 _t flag)

Rackchip

WMET www.rock-chips.com
int rknn_init2(rknn_context* context, void* model, uint32 t size, uint32 t flag,
rknn_init extend* extend)

Description | Create a context and load the rknn model.
Parameter rknn_context* context: The pointer of context object. Used to return the created context

object.

void* model: A pointer to the rknn model.

uint32 tsize: The size of the rknn model.

uint32 tflag: Extended flag:

RKNN_FLAG_PRIOR_HIGH: Create a high priority context.

RKNN_FLAG_PRIOR _MEDIUM: Create a medium priority context.

RKNN_FLAG_PRIOR_LOW: Create a low priority context.

RKNN_FLAG_ASYNC_MASK: Enable Asynchronous mode. When enable,
rknn_outputs_get will not block for too long, because it returns the inference result of the
previous frame directly (except for the inference result of the first frame), which will
significantly improve the inference frame rate in single-thread mode, but the cost is that
rknn_outputs_get return not the inference results of the current frame. When rknn_run and
rknn_outputs_get are in different threads, there is no need to enable the Asynchronous
mode.

RKNN_FLAG_COLLECT PERF _MASK: Enable performance collection debug
mode. When enable, you can query the running time of each layer of network through the
rknn_query interface. It should be noted that the total time spent in inferring one frame is
longer than RKNN FLAG COLLECT PERF MASK unset, because the execution of each

layer needs to be synchronized.

rknn_init_extend* extend: the pointer of extend information. Used to set or get
information corresponding to the current rknn_init, such as device id (see the

rknn_init_extend definition for details). If not used, can be set to NULL.

Rackchip

WMET www.rock-chips.com

Return Error code (see Error Code).

The sample code is as follow:

rknn_context ctx;
int ret = rknn_init(&ctx, model data, model data size, 0);

3.1.2 rknn_destroy

API int rknn_destroy(rknn_context context)

Description | Unload the rknn model and destroy the context and its associated resource.

Parameter rknn_context context: The object of context.

Return Error code (see Error Code).

The sample code is as follow:

int ret = rknn_destroy (ctx);

3.1.3 rknn_query

API int rknn_query(rknn_context context, rknn_query cmd cmd, void* info, uint32_t size)

Description | Query the related information of RKNN Model and SDK.

Parameter | rknn_ context context: The object of context.

rknn_query cmd cmd: The command of query.

void* info: The structure variable that store the returned result.

uint32 tsize: The size of the structure variable corresponding to info.

Return Error code (see Error Code).

The supported query commands of current SDK are shown in the following table:

Command of Query Returned Structure Description

Rackchip

His i F

www.rock-chips.com

RKNN_QUERY_IN_OUT NUM

rknn input output num

Query the number of input and output

tensor.

RKNN_QUERY INPUT ATTR

rknn tensor attr

Query the attribute of input tensor.

RKNN_QUERY_OUTPUT ATTR

rknn tensor attr

Query the attribute of output tensor.

RKNN QUERY PERF DETAIL

rknn_perf detail

Query the running time of each layer of
the network.

This query requires use the
RKNN FLAG COLLECT PERF MASK

in rknn_init, otherwise no detailed layer
performance information can be obtained.
In addition, the
rknn_perf detail.perf data returned by
the RKNN _QUERY PERF DETAIL
query does not require the user to free
actively.

Pay attention that the query can only
return the correct query result after the

rknn_outputs_get function is called.

RKNN_QUERY PERF_RUN

rknn_perf run

Query the hardware execution time of
single inference.

Pay attention that the query can only
return the correct query result after the

rknn_outputs_get function is called.

RKNN_QUERY SDK_VERSION

rknn sdk version

Query the SDK version.

The next section will explain in detail how each query command should be used.

Rackchip
WEWMET www.rock-chips.com

3.1.3.1 Query the number of input/output tensor

The RKNN_QUERY IN OUT NUM command can be used to query the number of input/output
tensor. The object of rknn_input_output num structure needs to be created first.
The sample code is as follows:
rknn_input output num io num;
ret = rknn_query(ctx, RKNN QUERY IN OUT NUM, &io num, sizeof(io num));

printf("model input num: %d, output num: %d\n", io num.n_input,
10_num.n_output);

3.1.3.2 Query the attribute of input tensor

The RKNN _QUERY INPUT ATTR command can be used to query the attribute of input tensor. The
object of rknn_tensor_attr structure needs to be created first.
The sample code is as follows:
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
for (inti=0; i <io num.n input; i++) {
input_attrs[i].index = i;

ret =rknn_query(ctx, RKNN QUERY INPUT ATTR, &(input_attrs[i]),
sizeof(rknn_tensor_attr));

3.1.3.3 Query the attribute of output tensor

The RKNN_QUERY OUTPUT _ATTR command can be used to query the attribute of output tensor.
The object of rknn_tensor_attr structure needs to be created first.

The sample code is as follows:

Rackchip

WMET www.rock-chips.com

rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
for (inti=0; 1 <io num.n output; i++) {
output_attrs[i].index = i;
ret = tknn_query(ctx, RKNN QUERY OUTPUT ATTR, &(output_attrs[i]),
sizeof(rknn_tensor_attr));

3.1.3.4 Query the running time of each layer of the network

If you have set RKNN FLAG COLLECT PERF MASK flag when rknn_init function is called, then
you can use RKNN_QUERY PERF DETAIL to query the running time of each layer of the network after
the rknn_outputs_get execution completed.

The object of rknn_perf detail structure needs to be created first.

In addition, the rknn_perf detail. perf data returned by the RKNN QUERY PERF DETAIL query
does not require the user to free it.

Pay attention that the query can only return the correct query result after the rknn_ outputs get
function is called.

The sample code is as follows:

rknn_perf detail perf detail;

ret = rknn_query(ctx, RKNN QUERY PERF DETAIL, &perf detail,
sizeof(rknn_perf detail));

printf("%s", perf detail.perf data);

3.1.3.5 Query the hardware execution time of single inference.

The RKNN QUERY PERF RUN command can be used to query the hardware execution time of
single inference. The object of rknn_perf run structure needs to be created first.

Pay attention that the query can only return the correct query result after the rknn outputs get
function is called.

The sample code is as follows:

10

Rackchip

FR e F

www.rock-chips.com

rknn_perf run perf run;
ret = tknn_query(ctx, RKNN QUERY PERF RUN, &perf run,

sizeof(rknn_perf run));

printf("%Id", perf run.run_duration);

3.1.3.6 Query the SDK version

The RKNN_QUERY SDK VERSION command can be used to query the SDK version. The

object of rknn_sdk_version structure needs to be created first.

The sample code is as follows:

rknn_sdk version version;
ret = rknn_query(ctx, RKNN_QUERY_SDK VERSION, &version,

sizeof(rknn_sdk version));

printf("api version: %s\n", version.api_version);

printf("driver version: %s\n", version.drv_version);

3.1.4 rknn_inputs_set

API

int rknn_inputs_set(rknn_context context, uint32_t n_inputs, rknn_input inputs[])

Description

Set the buffer pointer and other parameters of inputs.
The buffer pointer and parameters of single input need to be stored in rknn_input. This

function can support multiple inputs.

Parameter

rknn_context context: the object of context.

uint32 _tn_inputs: the number of inputs.

rknn_input inputs[]: the arrays of inputs information, each element of the array is a

rknn_input structure object.

Return

Error code (see Error Code).

The sample code is as follows:

11

Rackchip

WMET www.rock-chips.com

rknn_input inputs[1];

memset(inputs, 0, sizeof(inputs));

inputs[0].index = 0;

inputs[0].type = RKNN_TENSOR_UINTS;
inputs[0].size = img_width*img_height*img_channels;
inputs[0].pass_through = FALSE;

inputs[0].fmt = RKNN TENSOR NHWC;
inputs[0].buf = in_data;

ret = rknn_inputs set(ctx, 1, inputs);

For more detailed usage, see the step 4 of the [RKNN API Basic Call Flow] section.

3.1.5 rknn_run

API int rknn_run(rknn_context context, rknn_run_extend* extend)

Description | Perform a model inference.
The input data need to be set by rknn_inputs_set function before calling rknn_run.
The rknn_run will not block normally, but it will block when there are more than 3

inference results not obtained by rknn_outputs_get.

Parameter rknn_context context: the object of context.

rknn run extend* extend: the pointer of extend information. Used to set or get
information about the frame corresponding to the current rknn_run, such as frame_id (see

the rknn_run_extend definition for details). If not used, can be set to NULL.

Return Error code (see Error Code).

The sample code is as follows:

ret = rknn_run(ctx, NULL);

3.1.6 rknn_outputs get

API int tknn_outputs_get(rknn_context context, uint32 t n_outputs, rknn_output outputs[],

12

Rackchip

FR e F

www.rock-chips.com

rknn_output_extend* extend)

Description

Waiting for the inference operation to completed and get the output results.

This function can obtain multiple output data at one time. Each output corresponds to a
rknn_output structure object, you need to create and set each rknn_output object in turn
before the function is called. In addition, the function will block until the inference
completed (unless there is an exception error). The output results will eventually be stored
in the array of outputs/].

There are two ways to use the buffer of the output data:

1. Users malloc and free the output buffer themselves. In this mode, the is_prealloc of
the rknn_output object needs to be set to TRUE, and the rknn_output.buf also needs to be
set by user.

2. The output buffer malloc and free by rknn api. In this mode, the is_prealloc of the
rknn_output object needs to be set to FALSE, and rknn_output.buf will point to output data

after the function is called.

Parameter

rknn_context context: the object of context.

uint32 t n_outputs: the number of output arrays. This number must be the same as the
number of outputs of rknn model. (the number of outputs of rknn model can be queried by

rknn_query.)

rknn_output outputs[]: the arrays of outputs information. Each element of array is a

rknn_output structure object, representing an output of the model.

rknn_output_extend* extend: the pointer of extend information. Used to set or get
information about the frame corresponding to the current rknn_outputs get, such as

frame_id (see the rknn_output_extend definition for details). If not used, can be set to

NULL.

Return

Error code (see Error Code).

The sample code is as follows:

13

Rackchip

WMET www.rock-chips.com

rknn_output outputs[io_num.n_output];

memset(outputs, 0, sizeof(outputs));

for (inti=0; i <io num.n output; i++) {
outputs[i].want_float = TRUE;
outputs[i].is_prealloc = FALSE;

H

ret = rknn_outputs get(ctx, io_num.n_output, outputs, NULL);

For more detailed usage, see the step 6 of the [RKNN API Basic Call Flow] section.

3.1.7 rknn_outputs_release

API int rknn_outputs_release(rknn_context context, uint32_tn_ouputs, rknn_output outputs[])

Description Release outputs that obtained by rknn_outputs get.

When the outputs are no longer used, you need to call the function to release it.
(Whether rknn_output[x].is_prealloc is TRUE or FALSE, you need to call the function to
release the outputs.)

After the function is called:

when rknn_output[x].is_prealloc = FALSE, the rknn_output/x].buf obtained by
rknn_outputs_get is also released automatically;
when rknn_output[x].is_prealloc = TURE, the rknn_output/x].buf requires user to

free it.

Parameter rknn_context context: the object of context.

uint32 t n_outputs: the number of output arrays. This number must be the same as the
number of outputs of rknn model. (the number of outputs of rknn model can be queried by

rknn_query.)

rknn_output outputs[]: the arrays of outputs information.

Return Error code (see Error Code).

The sample code is as follows:

14

Rackchip

WMET www.rock-chips.com

ret = rknn_outputs release(ctx, io_num.n_output, outputs);

3.1.8 rknn_find_devices

API int rknn_find_devices(rknn_devices_id* pdevs)

Description | find the devices information that connected to host.

Parameter | rknn devices id* pdevs: the pointer of devices information structure.

Return Error code (see Error Code).

The sample code is as follows:

rknn devices_id devids;
ret =rknn_find devices (&devids);
printf("n_devices = %d\n", devids.n_devices);
for(int i=0; i<devids.n_devices; i++) {
printf("%d: type=%s, id=%s\n", i, devids.types[i], devids.ids][i]);

3.2 RKNN Data Structure Definition

3.2.1 rknn_input_output num

The structure rknn_input _output_num represents the number of tensors of input and output. The

following table shows the definition of the structure:

Field Data Type Meaning
n_input uint32 t The number of input tensor.
n_output uint32 t The number of output tensor.

3.2.2 rknn_tensor_attr

The structure rknn_tensor_attr represents the tensor attribute of rknn model, The following table

shows the definition of the structure:

15

Rackchip

His i F

www.rock-chips.com

Field

Data Type

Meaning

index

uint32_t

The index of input or output tensor.
The index needs to be set before calling the

rknn_query.

n_dims

uint32_t

The number of tensor dimensions.

dims

uint32 t[]

Each dimension value of tensor.

name

charf]

Name of tensor.

n_elems

uint32 t

The number of tensor elements.

size

uint32_t

The memory size of tensor data.

fmt

rknn_tensor format

The dimension format of tensor, as follows:
RKNN_TENSOR _NCHW

RKNN _TENSOR NHWC

type

rknn_tensor_type

The data type of tensor, as follows:
RKNN _TENSOR FLOAT32
RKNN _TENSOR _FLOATIé6
RKNN _TENSOR_INTS
RKNN _TENSOR _UINTS

RKNN_TENSOR_INT16

qnt_type

rknn_tensor_qnt_type

The quantization type of tensor, ds:
RKNN_TENSOR_QONT _NONE:
none quantization.
RKNN _TENSOR ONT DFP:
Dynamic fixed-point quantization.
RKNN _TENSOR ONT AFFINE ASYMMETRI
C:

Asymmetric affine quantization.

16

Rackchip

WMET www.rock-chips.com
fl int8 t Fractional length for RKNN _TENSOR _QNT DFP.
zp uint32 t Zero point for
RKNN TENSOR _QNT AFFINE ASYMMETRIC.
scale float Scale for
RKNN TENSOR ONT AFFINE ASYMMETRIC.

3.2.3 rknn_input

The structure rknn_input represents an input data of model, used as a parameter to the

rknn_inputs_set function. The following table shows the definition of the structure:

Field Data Type Meaning
index uint32 t The index of input tensor.
buf void* The buffer point of input data.
size uint32 t The memory size of input data buffer.
pass_through uint8_t The pass-through mode of input.

TRUE: The input data is passed directly to the
input node of rknn model without any conversion,
therefore the following #ype and fint do not need to
be set.

FALSE: The input data will convert to the same
data type and format as the input node of the rknn
mode according to the following #pe and fint,

therefore the following #ype and fimt need to be set.

type

rknn_tensor_type

The data type of input tensor, as follow:
RKNN _TENSOR _FLOAT32
RKNN _TENSOR FLOATI16

RKNN_TENSOR_INTS

17

Rackchip

WMET www.rock-chips.com
RKNN_TENSOR _UINTS
RKNN _TENSOR INTI16
fmt rknn_tensor format | The dimension format of input tensor, as follow:

RKNN_TENSOR_NCHW

RKNN _TENSOR NHWC

3.2.4 rknn_output

The structure rknn_output represents an output data of the model, used as a parameter to the

rknn_outputs _get function. The following table shows the definition of the structure:

Field Data Type Meaning
want_float uint8_t Identifies whether the output data needs to be
converted to float32 type.
is_prealloc uint8_t Identifies whether the buffer that holds the output
data is pre-allocated.
index uint32 t The index of output tensor.
buf void* The buffer pointer of output.
size uint32 t The memory size of output data buffer.

When the is prealloc is FALSE, the index/buf/size of rknn_output will be set after

rknn_outputs_get is called, therefore the three members do not need to be pre-set.

When the is_prealloc is TRUE, the index/buf/size of rknn_output need to be set before calling

rknn_outputs_get, otherwise the rknn_outputs_get function will fail with an error.

3.2.5 rknn_perf detail

The structure rknn_perf detail represents the performance details of rknn model. The following

table shows the definition of the structure:

Field

Data Type

Meaning

18

Rackchip

WMET www.rock-chips.com
perf data char* Contains the running time of each layer of the
network, can be printed directly for viewing.
data_len uint64 t The string length of perf data.

3.2.6 rknn_perf run

The structure rknn_perf run represents the execution time of a single inference of rknn model.

The following table shows the definition of the structure:

Field

Data Type

Meaning

run_duration

int64_t

The hardware execution time (us) of a single

inference of rknn model.

3.2.7 rknn_init_extend

The structure rknn_init extend represents the extended information of rknn init, used as

parameter to rknn_init function.

The following table shows the definition of the structure:

Field

Data Type

Meaning

device id

char#*

Used to select the connected device. Such as
“0123456789ABCDEF”, the device id can be query
by “adb devices”. If only one device connected, can

set nullptr.

3.2.8 rknn_run_extend

The structure rknn run_extend represents the extended information of rknn run, used as

parameter to rknn_run function.

The following table shows the definition of the structure:

Field

Data Type

Meaning

19

Rackchip
IR T

www.rock-chips.com

frame_id

uint64 t

Used to get the frame id after the rknn_run function
is called. The frame id corresponds to
rknn_output _extend. frame id one by one, In the
case where rknn_run and rknn_outputs get are in
different threads, it can be used to determine the

correspondence of frame.

3.2.9 rknn_output_extend

The structure rknn_output extend represents the extend information of rknn_outputs get, used

as parameter to 7knn_outputs_get function. The following table shows the definition of the structure:

Field

Data Type

Meaning

frame id

uint64 t

Used to get the frame id after the rknn_outputs get
function is called. The frame id corresponds to
rknn_run_extend.frame_id one by one, In the case
where rknn_run and rknn_outputs get are in
different threads, it can be used to determine the

correspondence of frame.

3.2.10 rknn_sdk_version

The structure rknn_sdk version represents the version information of RKNN SDK. The

following table shows the definition of the structure:

Field Data Type Meaning
api_version charf[] The version of RKNN APIL
drv_version charf[] The driver version on which RKNN API is based.

20

Rackchip

WMET www.rock-chips.com

3.2.11 rknn_devices_id

The structure rknn_devices_id represents the information of device ID list. The following table

shows the definition of the structure:

Field Data Type Meaning
n_devices uint32 t The number of devices
types char[][] The array of device type.
ids char[][] The array of device ID.

3.2.12 Error Code

The return error code of RKNN API. The following table shows the definition:

Error Code Meaning
RKNN SUCC Execution is successful.
RKNN_ERR FAIL Execution is failed.
RKNN _ERR TIMEOUT Execution timeout.

RKNN_ERR DEVICE UNAVAILABLE | The NPU device is unavailable.

RKNN ERR MALLOC FAIL Memory allocation is failed.

RKNN _ERR PARAM INVALID The parameter is invalid.

RKNN ERR MODEL INVALID The RKNN model is invalid.

RKNN _ERR CTX INVALID The rknn_context is invalid.

RKNN ERR INPUT INVALID The object of tknn_input is invalid.
RKNN_ERR OUTPUT _INVALID The object of rknn_output is invalid.
RKNN ERR DEVICE UNMATCH The device version does not match.

3.3 RKNN API Basic Call Flow

1) Load the file of rknn model into memory, the file of rknn model is a model file with the rknn

21

Rackchip

WEWMET www.rock-chips.com

suffix generated by the RKNN-Toolkit that described above, such as mobilenet vI-tf.rknn.

2) Call the rknn_init to initialize the context and load the rknn model, code is as follows:

rknn_context ctx = 0;
ret = rknn_init(&ctx, model, model len, RKNN FLAG PRIOR MEDIUM);
if(ret < 0) {

printf("rknn_init fail! ret=%d\n", ret);

goto Error;

The ctx is the context object; the model is the pointer of rknn model in memory; the model len

is size of model; the RKNN _FLAG PRIOR MEDIUM is the priority flag.

3) The attributes of input/output of rknn model may be different from the original model (pb or
caffe), so you need to get the new attributes of input/output through rknn_gquery function, as
follows:

rknn_input output num io num;
ret = rknn_query(ctx, RKNN QUERY IN OUT NUM, &io num, sizeof(io _num));
if(ret < 0) {

printf("rknn_query fail! ret=%d\n" ret);
goto Error;

The above code used to get the number of input and output, the number will store in

io_num.n_input and io_num.n_output.

Next get the attribute of output:

22

Rackchip

WEWMET www.rock-chips.com

4)

rknn_tensor_attr outputQ_attr;
output0_attr.index = 0;
ret = rknn_query(ctx, RKNN_QUERY OUTPUT ATTR, &outputO_attr,
sizeof(outputO_attr));
if(ret < 0) {
printf("rknn_query fail! ret=%d\n" ret);
goto Error;

The above code used to get the attribute of an output, remember to set the index of
rknn_tensor_attr (the index cannot be greater than or equal to the number of outputs that

obtained earlier).

Obtaining an input attribute method is similar to getting the output attribute method.

Call rknn_input set to set the inputs according to the input parameter/format of rknn model,

code is as follows:

rknn_input inputs[1];
inputs[0].index = input_index;
inputs[0].buf = img.data;
inputs[0].size = img_width * img_height * img_channels;
inputs[0].pass_through = FALSE;
inputs[0].type = RKNN_TENSOR_UINTS;
inputs[0].fmt = RKNN TENSOR NHWC;
ret = rknn_inputs set(ctx, 1, inputs);
if(ret < 0) {
printf("rknn_input_ set fail! ret=%d\n", ret);
goto Error;

First create an array of rknn_input (here assumes that there is only one input, so the array

size is set to 1), then fill each member of each array item:

inpis 07 index Index of input node.

inprits |07 buf Buffer pointer that can be accessed by cpu, generally pointer to image

data that generated by camera, such as RGB888 data.

inputs[0f.size The size of buffer.

23

Rackchip

WMET www.rock-chips.com

5)

inputs [0 pass: thiough Pass-through mode:
TRUE: If the attributes (mainly #ype, fint and the quantization parameter) of input
data are consistent with the input attributes obtained by the rknn query, then the
pass_through can be set to TRUE, and the following #ype and fint don’t need to be set.
In this mode, rknn_inputs_set will pass the input data directly to the input node of
rknn model. This mode is used by user to know the input attribute of the rknn model,
and has converted the original input data to the data that consistent with the rknn
model input.
FALSE: If the attributes (mainly #ype, fint and the quantization parameter) of input
data are inconsistent with the input attributes obtained by the rknn_query, then the
pass_through needs to be set to FALSE, and the following #ype and fint also need to
be set by user. In this mode, the rknn_inputs set function will perform type and
format conversion and quantization processing automatically. Note that this mode

does not support dynamic fixed point (DFP) or asymmetric affine (AFFINE

ASYMMETRIC) input data passed by user.

inptits [0 fppe Data type of buffer, if it is RGB888 data, then set to

obtained by camera is generally RKNN _TENSOR _NHWC.

Call rknn_run to trigger the inference operation after the input parameter was set. The function

will return immediately (but when there are more than 3 inference results not obtained by
rknn_outputs _get, the tknn_run will block until the rknn_ outputs get is called). Code is as

follows:

24

Rackchip

WEWMET www.rock-chips.com

ret = rknn_run(ctx, NULL);

if(ret < 0) {
printf("rknn_run fail! ret=%d\n", ret);
goto Error;

6) Now you can call rknn_outputs get to wait for the inference to complete after rknn_run is

called, the rknn_outputs_get will block until the inference is completed, and then the inference

results can be obtained. Code is as follows:

rknn_output outputs[1];
outputs[0].want_float = TRUE;
outputs[0].is_prealloc = FALSE;
ret = rknn_outputs get(ctx, 1, outputs, NULL);
if(ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

First create the array of rknn_output (assume there is only one output, so the size of array
set to 1). The first two members of rknn_output need to be set, namely outputs/0].want_float

and outputs[0].is_prealloc.

want _float: Since the output type of the rknn model may be inconsistent with the output
type of the original model. In general, the output type of rknn model is UINT8 or FP16 (the
output specific attribute of rknn model can be obtained by rknn_query). If the user wants to
obtain the FP32 output data, the want_float can be set to TRUE; If the user wants to get the raw

output data of rknn model, set it to FALSE.

is_prealloc = FALSE: If the user does not pre-allocate the buffer of each output, the
is_prealloc flag can be set to FALSE, and the remaining member of outputs/0] do not need to

be set. The inference results will be stored in output/0] after rknn_outputs get returned, the

25

Rackchip

WEWMET www.rock-chips.com

results contain:

ottputs[0f.index Index of output node.

outputs[OF.buf Buffer pointer that store inference result.

outpiits]0f:sizé Size of buffer.
In addition, the other attribute of inference result of output/0] can be obtained by
rknn_query. It should be noted that the outputs/0].buf is automatically released when the

rknn_output_release is called, so there is no need to free it by user.

is_prealloc = TRUE: If the user has pre-allocate the buffer of each output, the is_prealloc
flag can be set to TRUE, and the remaining member of output/0] also need to be set Code is as

follows:

rknn_output outputs[1];

outputs[0].want_float = TRUE;

outputs[0].is_prealloc = TRUE;

outputs[0].index = 0;

outputs[0].buf = output0_buf;

outputs[0].size = output0_attr.n_elems * sizeof(float);

ret = rknn_outputs_get(ctx, 1, outputs, NULL);

if(ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

The remaining member of output/0] is:

outprgs[0] index Index of output node. The user needs to specify the index of the
output, and the index must be smaller than the number of outputs of rknn model. (the number of

outputs of tknn model can be obtained by rknn_query.)

outputs[07.buf Buffer pointer for store inference result. The buf need to be pre-created

outputs[0].size Size of buffer. The size needs to be calculated according to the

corresponding output attribute and the want_float flag.

When want_float is FASLE, the size equal to the output0_attr.size;

26

Rackchip

WMET www.rock-chips.com

7)

8)

9)

When want_float is FALSE, the size equal to:
output(_attrn_elems * sizeof{(float).
(output(_attr is attribute of output 0O that obtained by rknn_guery.)
After the rknn_outputs_get is returned, the inference result of corresponding index will be
stored in the output/0].buf, since the buf is created by user, so the user needs to free it to avoid

memory leak when it is no longer needed.

When all the outputs obtained by rknn_outputs get are no longer needed, you need to call

rknn_outputs_release to release the outputs, otherwise it will cause a memory leak. Code is as

follows:

rknn_outputs_release(ctx, 1, outputs);

The way of passing parameter is similar to rknn_outputs get.
It should be noted that whether the rknn_output/x].is_prealloc is TRUE or FALSE, this

function needs to be called to release the output finally.

If you need to make multiple inferences, you can jump back to step 4 for next inference.

When the program needs to exit, you need to call rknn_destroy to unload model and destroy the

context, code is as follows:

rknn_destroy(ctx);

For more detailed code, please refer to the file of API SDK under the Linux directory:
<Linux>/rknn_api_sdk/rknn_mobilenet.cpp
<Linux>/rknn_api_sdk/rknn_ssd.cpp

or under the Android directory:

27

Rackchip

WMET www.rock-chips.com

<Android>/rk_ssd_demo/app/src/main/jni/ssd_image.cc

4 Demo Instructions

4.1 Linux Arm Demo

4.1.1 Compilation Instructions

Two demos using RKNN API are provided in Linux directory of API SDK, one is image

classifier demo based on MobileNet, the other is object detection demo based on SSD.

Enter the <Linux>/rknn_api sdk directory, the main source file for these two demos is
<rknn_api_sdk>/rknn_mobilenet.cpp and <rknn_api_sdk>/rknn_ssd.cpp, the specific compile

method is as follows:

1) Install the arm cross-complication tool:

sudo apt install gcc-aarch64-linux-gnu

sudo apt install g++-aarch64-linux-gnu

4) make
You can get rknn_mobilenet and rknn_ssd executable file in <rknn_api sdk>/build _arm/ after the

make is finished.
Note: Currently the demo is only available for the Linux Arm 64-bit system, so only 64-bit rknn api
library is provided. The demo is verified on the RK3399Pro Linux 64-bit system.
4.1.2 Run Instructions
For running the rknn_mobilenet and rknn_ssd, you need to copy the dependencies library to <Target

28

Rackchip

WMET www.rock-chips.com

Root>/usr/lib/ or <Target Root>/ust/lib64/, and copy the relevant resource files to the <Target
Root>/tmp directory. The specific steps are as follows:

1) Copy the contents in the <Linux>/rknn_api_sdk/3rdparty/opencv/arm/lib64 directory and
<Linux>/rknn_api_sdk/rknn_api/arm/lib64 directory to the /usr/lib/ or /usr/lib64/ directory on
the target board.

2') Copy the contents in the <Linux>/tmp/ directory of the API SDK package to the /tmp/ directory
of the target board.

3) Copy the rknn_mobilenet and rknn_ssd compiled in <Linux>/rknn_api_sdk/build_arm directory
to the /tmp/ directory of the target board.

4) Go to the /tmp directory of the target board to execute:

Jrknn_mobilenet

After the execution is successful, it will print the execution time and results.

Go to the /tmp directory of the target board to execute:

Jrknn_ssd

After the execution is successful, it will print the execution time and results. At the same time,
the image out,jpg containing the detection result will be generated in the /fmp directory of the

target board, you can export the out.jpg to view the detection result.

4.2 Linux X86 Demo

4.2.1 Compilation Instructions

Two demos using RKNN API are provided in Linux directory of API SDK, one is image

classifier demo based on MobileNet, the other is object detection demo based on SSD.

Enter the <Linux>/rknn_api sdk directory, the main source file for these two demos is

<rknn_api_sdk>/rknn_mobilenet.cpp and <rknn_api sdk>/rknn_ssd.cpp, the specific compile

29

Rackchip

WMET www.rock-chips.com

method is as follows:

You can get rknn_mobilenet and rknn_ssd executable file in <rknn_api sdk>/build x86/ after the

make is finished.

Note: Currently the demo is only available for the X86 Linux 64-bit system, so only 64-bit rknn api

library is provided. The demo is verified on the Ubuntu 16.04 64-bit system.

4.2.2 Run Instructions

For running the rknn_mobilenet and rknn_ssd, you need to copy the dependencies library and the
relevant resource files to the /tmp directory. The specific steps are as follows:
1) Copy the contents in the <Linux>/rknn_api sdk/3rdparty/opencv/x86/lib64 directory and

<Linux>/rknn_api_sdk/rknn_api/x86/1ib64 directory to the /tmp/ directory on the x86 system.

2) Copy the contents in the <Linux>/tmp/ directory of the API SDK package to the /tmp/ directory

on the x86 system.

3) Copy the rknn_mobilenet and rknn_ssd compiled in <Linux>/rknn_api_sdk/build x86 directory
to the /tmp/ directory on the x86 system.

4) Copy the npu_transfer proxy in <nmpu_transfer proxy>/1inux—x86 64 directory to the /tmp/
directory on the x86 system.

5) Make sure that the RK1808 is connected to the PC via USB, and you can see the following
device information through ‘Isusb’:
Bus 001 Device 032: ID 2207:0019

6) Go to the /tmp directory to execute:

sudo ./npu_transfer proxy &

30

Rackchip

WMET www.rock-chips.com

export LD LIBRARY PATH=/tmp
Jrknn_mobilenet

After the execution is successful, it will print the execution time and results.

export LD LIBRARY PATH=/tmp

Jrknn_ssd

After the execution is successful, it will print the execution time and results. At the same time,
the image out.jpg containing the detection result will be generated in the /fmp directory, you can

open the out.jpg to view the detection result.

4.3 Android Demo

4.3.1 Compilation Instructions

There are <Android>/rknn_api directory and <Android>/rk_ssd_demo directory under the Android

directory of API SDK.

If you want to use RKNN API directly to develop your own JNI library, the JNI library can include
the <Android>/rknn_api/include/rknn_api.h and <Android>/rknn_api/lib(64)/librknn_api.so to call

RKNN API.

The directory is an object detection demo based on the SSD using RKNN API. The demo contains
the java and JNI parts. The JNI directory is <Android>/rk_ssd_demo/app/src/main/jni, the rknn_api.h
header file and the /ibrknn_api.so library file are already included in the JNI directory.

The specific compilation method of vk _ssd_demo is as follows:

31

Rackchip
WMET www.rock-chips.com

1) Enter the <Android>/rk_ssd_demo directory, and open the project file by Android Studio.

2) Build and generate apk (need NDK support, verified on android-ndk-ri16b).

4.3.2 Run Instructions

Run the apk directly on Android. (The demo needs an onboard camera or an external USB camera

support.)

32

Rackchip

WEWMET www.rock-chips.com

S5 Appendix

5.1 API Migration Instructions

Since the API changes made from v0.9.1 to v0.9.2 are relatively large, users can migrate the codes
according to the following migration steps and the above API description. The general steps are as
follows:

1) Since the definition of the context handle is changed from inf type to the rknn_context type, so
the context variable and the use of rknn_init are slightly changed. The codes can be modified

from:

int ret = 0;
int ctx = rknn_init(model, model len, RKNN FLAG PRIOR MEDIUM);
if(ctx <0) {

printf("rknn_init fail! ret=%d\n", ctx);

goto Error;

if(ctx >=0) rknn_destroy(ctx);
To:

int ret = 0;
rknn_context ctx = 0;
ret = rknn_init(&ctx, model, model len, RKNN FLAG PRIOR MEDIUM);
if(ret < 0) {
printf("rknn _init fail! ret=%d\n", ret);
goto Error;

if(ctx) rknn_destroy(ctx);

Note: Parts in red are changed.

2') Since the rknn_input_set function needs to support data types and formats other than INTS, so

33

Rackchip

WMET www.rock-chips.com

the definition of function has also been adjusted. The codes can be modified from:

ret = rknn_input_set(ctx, input_index, img.data, img_width * img_height * img_channels,
RKNN INPUT ORDER 012);
if(ret < 0) {
printf("rknn_input set fail! ret=%d\n", ret);
goto Error;

To:

rknn_input inputs[1];
inputs[0].index = input_index;
inputs[0].buf = img.data;
inputs[0].size = img_width * img_height * img_channels;
inputs[0].pass_through = false;
inputs[0].type = RKNN_ TENSOR_ UINTS;
inputs[0].fmt = RKNN TENSOR NHWC;
ret = rknn_inputs set(ctx, 1, inputs);
if(ret < 0) {

printf("rknn_input set fail! ret=%d\n", ret);

goto Error;

Note: Parts in red are changed. In addition, the parameter RKNN INPUT ORDER 012 does not

need to be used, and the rknn_inputs_set also has an additional s.

3) The rknn_outputs get and rknn_output to float function are merged in v0.9.2, and added a new

way to use the memory, so the change is great. The codes can be modified from:

inth output=-1;
struct tknn_output outputs[2];
h output =rknn_outputs get(ctx, 2, outputs, nullptr);
if(h_output < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

To:

34

Rackchip

WMET www.rock-chips.com

rknn_output outputs[2];
outputs[0].want_float = true;
outputs[0].is_prealloc = false;
outputs[1].want float = true;
outputs[1].is_prealloc = false;
ret = rknn_outputs_get(ctx, 2, outputs, nullptr);
if(ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto Error;

Note: Parts in red are changed. The number of outputs above is 2 for example, and other models

can be modified based on actual conditions.

4) Since the rknn outputs get has merged the functions of rknn_output to float (that is the
want_float flag above), so the call step of rknn_output to float can be removed. The codes can

be modified from:

float *predictions = (float*)(outputs[0].buf);
if(outputs_attr[0].type != RKNN TENSOR FLOAT32) {
predictions = (float*)malloc(output_sizel);
rknn_output to_float(ctx, outputs[0], (void*)predictions, output_sizel);
}
float *outputClasses = (float™)(outputs| 1].buf);
if(outputs_attr[1].type != RKNN TENSOR FLOAT32) {
outputClasses = (float*)malloc(output_size2);
rknn_output to float(ctx, outputs[1], (void*)outputClasses, output_size2);

if(outputs_attr[0].type != RKNN TENSOR FLOAT32) {

free(predictions);

H

if(outputs_attr[1].type != RKNN TENSOR FLOAT32) {
free(outputClasses);

H

To:

35

Rackchip

WEWMET www.rock-chips.com

5)

6)

float *predictions = (float*)(outputs[0].buf);
float *outputClasses = (float*)(outputs[1].buf);

Note: Parts in red are changed. The above is based on the post-processing of SSD, and other

models can be modified based on actual conditions.

Because the above want float is set to True when rknn_outputs_get is called, so the value of

outputs[x].size may be inconsistent with the value of outputs attr[x].size that queried by
rknn_query, therefore the judgement condition that judges whether output/x].size is consistent

with the attribute of query needs to be modified. The codes can be modified from:

// Process output
if(outputs[0].size == outputs_attr[0].size && outputs[1].size == outputs_attr[1].size)

{

To:

// Process output
if(outputs[0].size == outputs_attr[0].n_elems*sizeof(float) && outputs[1].size ==
outputs_attr[1].n_elems*sizeof(float))

{

Note: Parts in red are changed. The number of outputs above is 2 for example, and other models

can be modified based on actual conditions.

The use of rknn_outputs release has also been adjusted, the way of parameter are passed

consistent with the rknn_outputs_get (the h_output does not need to use). The codes can be

modified from:

rknn_outputs release(ctx, h output);

To:

36

Rackchip

WMET www.rock-chips.com

rknn_outputs_release(ctx, 2, outputs);

Note: Parts in red are changed.

37

	1Overview
	2System Dependencies Description
	2.1 Linux Platform Dependencies
	2.2 Android Platform Dependencies

	3API Instructions
	3.1 RKNN API Details
	3.1.1rknn_init & rknn_init2
	3.1.2rknn_destroy
	3.1.3rknn_query
	3.1.3.1Query the number of input/output tensor
	3.1.3.2Query the attribute of input tensor
	3.1.3.3Query the attribute of output tensor
	3.1.3.4Query the running time of each layer of the networ
	3.1.3.5Query the hardware execution time of single infere
	3.1.3.6Query the SDK version

	3.1.4rknn_inputs_set
	3.1.5rknn_run
	3.1.6rknn_outputs_get
	3.1.7rknn_outputs_release
	3.1.8rknn_find_devices

	3.2 RKNN Data Structure Definition
	3.2.1rknn_input_output_num
	3.2.2rknn_tensor_attr
	3.2.3rknn_input
	3.2.4rknn_output
	3.2.5rknn_perf_detail
	3.2.6rknn_perf_run
	3.2.7rknn_init_extend
	3.2.8rknn_run_extend
	3.2.9rknn_output_extend
	3.2.10rknn_sdk_version
	3.2.11rknn_devices_id
	3.2.12Error Code

	3.3 RKNN API Basic Call Flow

	4Demo Instructions
	4.1 Linux Arm Demo
	4.1.1Compilation Instructions
	4.1.2Run Instructions

	4.2Linux X86 Demo
	4.2.1Compilation Instructions
	4.2.2Run Instructions

	4.3 Android Demo
	4.3.1Compilation Instructions
	4.3.2Run Instructions

	5Appendix
	5.1 API Migration Instructions

