
 www.rock-chips.com

 Classification Level: Top secret () Secret () Internal () Public (√)

Rockchip User Guide RKNN-Toolkit EN

(Technology Department, Graphic Display Platform Center)

Mark:

[] Editing

[√] Released

Version V1.2.1

Author Rao Hong

Completed Date 2019-09-26

Reviewer Randall

Reviewed Date 2019-09-26

福州瑞芯微电子股份有限公司

Fuzhou Rockchip Electronics Co., Ltd

(Copyright Reserved)

 www.rock-chips.com

 2

Revision History

Version Modifier Date Modify description Reviewer

V0.1 Yang Huacong 2018-08-25 Initial version Randall

V0.9.1 Rao Hong 2018-09-29

Added user guide for RKNN-Toolkit,

including main features, system

dependencies, installation steps, usage

scenarios, and detailed descriptions

of each API interface.

Randall

V0.9.2 Randall 2018-10-12
Optimize the way of performance

evaluation
Randall

V0.9.3 Yang Huacong 2018-10-24
Add instructions of connection to

development board hardware
Randall

V0.9.4 Yang Huacong 2018-11-03 Add instructions of docker image Randall

V0.9.5 Rao Hong 2018-11-19

1. Add an npy file as a usage specification

for the quantized rectified data

2. The instructions of pre-compile

parameter in build interface

3. Improve the instructions of

reorder_channel parameter in the config

interface

Randall

V0.9.6 Rao Hong 2018-11-24

1. Add the

instructions of get_perf_detail_on_hardwa

re and get_run_duration interfaces

2. Update the instructions of RKNN

initialization interface

Randall

 www.rock-chips.com

 3

Version Modifier Date Modify description Reviewer

V0.9.7 Rao Hong 2018-12-29

1. Interface optimization: delete the

instructions

of get_run_duration, get_perf_detail_on_h

ardware

2. Rewrite the instructions of

eval_ perf interface

3. Rewrite the instructions

of RKNN() interface

4. Add instructions of

the init_runtime interface

Randall

V0.9.7.1 Rao Hong 2019-01-11

1. Solve the bug that the program may

hang after multiple calls to inference

2. Interface adjustment: init_runtime does

not need to specify host, the tool will

automatically determine

Randall

V0.9.8 Rao Hong 2019-01-30

1. New feature：if set verbose parameter

to True when init RKNN object, users

can fetch detailed log information.

Randall

V0.9.9 Rao Hong 2019-03-06

1. New feature: add eval_memory

interface to check memory usage

when model running.

2. Optimize inference interface;

Optimize error message.

3. Add description for API interface:

get_sdk_version.

Randall

 www.rock-chips.com

 4

Version Modifier Date Modify description Reviewer

V1.0.0 Rao Hong 2019-05-06

1. Add async mode for init_runtime

interface.

2. Add input passthrough mode for

inference interface.

3. New feature: hybrid quantization.

4. Optimize initialize time of pre-

compiled model. Pre-compiled model

generated by RKNN-Toolkit-v1.0.0

can not run on device installed old

driver (NPU driver version < 0.9.6),

and pre-compiled model generated by

old RKNN-Toolkit (version < 1.0.0)

can not run on device installed new

NPU driver (NPU drvier version ==

0.9.6).

5. Adjust the shape of the inference

results: Before version 1.0.0, if the

output of the original model is

arranged in "NHWC" (such as

TensorFlow models), the tool will

convert the result to "NCHW"; starting

from version 1.0.0, this conversion

will not be done, but keep consistent

with the original model.

Randall

V1.1.0 Rao Hong 2019-06-28

1. Support TB-RK1808S0 AI Compute

Stick.

2. New interface: list_devices, used to

query devices connected to PC or

RK3399Pro Linux development board.

3. Support run on ARM64 platform with

python 3.5.

4. Support run on Windows / Mac OS X.

Randall

 www.rock-chips.com

 5

Version Modifier Date Modify description Reviewer

V1.2.0 Rao Hong 2019-08-21

1. Add support for model with multiple

inputs.

2. New feature: batch inference.

3. New feature: model segmentation.

4. New feature: custom op.

Randall

V1.2.1 Rao Hong 2019-09-26

1. New feature: load_rknn interface

supports direct loading of RKNN in

NPU.

2. Adjust the default value of batch_size

and epochs in config interface.

3. Bug fix.

Randall

 www.rock-chips.com

 6

Table of Contents

1 Overview .. 1

2 Requirements/Dependencies .. 4

3 User Guide ... 5

3.1 Installation .. 5

3.1.1 Install by pip command .. 5

3.1.2 Install by the Docker Image.. 6

3.2 Usage of RKNN-Toolkit ... 7

3.2.1 Scenario 1: Inference for Simulation on PC ... 7

3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick)

connected with PC ... 10

3.2.3 Scenario 3: Inference on RK3399Pro Linux development board .. 11

3.3 Hybrid Quantization .. 11

3.3.1 Instructions of hybrid quantization ... 12

3.3.2 Hybrid quantization profile .. 12

3.3.3 Usage flow of hybrid quantization .. 13

3.4 Model Segmentation ... 15

3.5 Example .. 16

3.6 RKNN-Toolkit API description .. 19

3.6.1 RKNN object initialization and release .. 19

3.6.2 Loading non-RKNN model ... 20

3.6.3 RKNN model configuration .. 23

3.6.4 Building RKNN model .. 25

3.6.5 Export RKNN model ... 27

3.6.6 Loading RKNN model... 27

 www.rock-chips.com

 7

3.6.7 Initialize the runtime environment .. 28

3.6.8 Inference with RKNN model ... 29

3.6.9 Evaluate model performance .. 32

3.6.10 Evaluating memory usage .. 35

3.6.11 Get SDK version ... 37

3.6.12 Hybrid Quantization ... 38

3.6.13 Export a segmentation model ... 40

3.6.14 List Devices .. 41

3.6.15 Register Custom OP ... 42

 1

1 Overview

RKNN-Toolkit is a software development kit for users to perform model conversion, inference

and performance evaluation on PC, RK3399Pro, RK1808, TB-RK1808S0 AI Compute Stick or

RK3399Pro Linux development board users can easily complete the following functions through the

provided python interface:

1） Model conversion: support to convert Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet

model to RKNN model, support RKNN model import/export, which can be used on hardware

platform later.

2） Quantization: support to convert float model to quantization model, currently support quantized

methods including asymmetric quantization (asymmetric_quantized-u8) and dynamic fixed point

quantization (dynamic_fixed_point-8 and dynamic_fixed_point-16). Starting with V1.0.0,

RKNN-Toolkit began to support hybrid quantization. For a detailed description of hybrid

quantization, please refer to Section 3.3.

3） Model inference: able to simulate running model on PC and obtain the inference results. Also

able to run model on specific hardware platform RK3399Pro (or RK3399Pro Linux development

board), RK1808, TB-RK1808 AI Compute Stick and obtain the inference results.

4） Performance evaluation: able to simulate running on PC and obtain the total time consumption

and each layer’s time consumption of the model. Also able to run model with on-line debugging

method on specific hardware platform RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or

directly run on RK3399Pro Linux development board to obtain the total time consumption and

each layer’s time consumption when the model runs completely once on the hardware.

5） Memory evaluation: Evaluate system and NPU memory consumption at runtime of the model. It

can obtain the memory usage through on-line debugging method when the model is running on

specific hardware platform such as RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or

RK3399Pro Linux development board.

 2

6） Model pre-compilation: with pre-compilation techniques, model loading time can be reduced,

and for some models, model size can also be reduced. However, the pre-compiled RKNN model

can only be run on a hardware platform with an NPU, and this feature is currently only supported

by the x86_64 Ubuntu platform. RKNN-Toolkit supports the model pre-compilation feature from

version V0.9.5, and the pre-compilation method has been upgraded in V1.0.0. The upgraded

precompiled model is not compatible with the old driver.

7） Model segmentation: This function is used in a scenario where multiple models run

simultaneously. A single model can be divided into multiple segments to be executed on the NPU,

thereby adjusting the execution time of multiple models occupying the NPU, and avoiding other

models because one model occupies too much execution time. RKNN-Toolkit supports this

feature from version 1.2.0. This feature must be used on hardware with an NPU and the NPU

driver version is greater than 0.9.8.

8） Custom OP: If the model contains an OP that is not supported by RKNN-Toolkit, it will fail

during the model conversion phase. At this time, you can use the custom layer feature to define

an unsupported OP so that the model can be converted and run normally. RKNN-Toolkit supports

this feature from version 1.2.0. Please refer to the <Rockchip_Developer_Guide_RKNN_-

Toolkit_Custom_OP_CN> document for the use and development of custom OP.

Note: Some features are limited by the operating system or chip platform and cannot be used on some

operating systems or platforms. The feature support list of each operating system (platform) is as follows:

 Ubuntu

16.04/18.04

Windows 7/10 Debian 9.8 (ARM

64)

MacOS Mojave

Model

conversion

yes yes yes yes

Quantization yes yes yes yes

Model inference yes yes yes yes

Performance yes yes yes yes

 3

evaluation

Memory

evaluation

yes yes yes yes

Model

pre-compilation

yes no no no

Model

segmentation

yes yes yes yes

Custom OP yes no no no

Multiple inputs yes yes yes yes

Batch inference yes yes yes yes

List devices yes yes yes yes

Query SDK

version

yes yes yes yes

 4

2 Requirements/Dependencies

This software development kit supports running on the Ubuntu, Windows, Mac OS X or Debian

operating system. It is recommended to meet the following requirements in the operating system

environment:

Table 1 Operating system environment

Operating system

version

Ubuntu16.04（x64）or later

Windows 7 (x64) or later

Mac OS X 10.13.5 (x64) or later

Debian 9.8 (x64) or later

Python version 3.5/3.6

Python library

dependencies

'numpy >= 1.16.1'

'scipy >= 1.1.0'

'Pillow >= 3.1.2'

'h5py >= 2.7.1'

'lmdb >= 0.92'

'networkx == 1.11'

'flatbuffers == 1.9',

'protobuf >= 3.5.2'

'onnx == 1.4.1'

'onnx-tf == 1.2.1'

'flask >= 1.0.2'

'tensorflow >= 1.11.0'

'dill==0.2.8.2'

'opencv-python>=3.4.3.18'

'ruamel.yaml==0.15.82'

'psutils>=5.6.2'

Note:

1. Windows and Mac OS only support Python 3.6 currently.

2. This document mainly uses Ubuntu 16.04 / Python3.5 as an example. For other operating

systems, please refer to the corresponding quick start guide:

<Rockchip_Quick_Start_RKNN_Toolkit_V1.2.1_EN.pdf>.

 5

3 User Guide

3.1 Installation

There are two ways to install RKNN-Toolkit: one is via pip install command, the other is running

docker image with full RKNN-Toolkit environment. The specific steps of the two installation ways are

described below.

PS: The method of install RKNN-Toolkit on RK3399Pro Linux Develop Board is introduced on this

link:

http://t.rock-chips.com/wiki.php?mod=view&id=36

3.1.1 Install by pip command

1. Create virtualenv environment. If there are multiple versions of the Python environment in the

system, it is recommended to use virtualenv to manage the Python environment.

sudo apt install virtualenv

sudo apt-get install libpython3.5-dev

sudo apt install python3-tk

virtualenv -p /usr/bin/python3 venv

source venv/bin/activate

2. Install dependent libraries: TensorFlow and opencv-python

Install tensorflow gpu

pip install tensorflow-gpu

Install tensorflow cpu. Only one version of tensorflow can be installed.

pip install tensorflow

Install opencv-python

pip install opencv-python

Note: RKNN-Toolkit itself does not rely on opencv-python, but the example will use this library

to load image, so the library is also installed here.

3. Install RKNN-Toolkit

http://t.rock-chips.com/wiki.php?mod=view&id=36

 6

pip install package/rknn_toolkit-1.2.1-cp35-cp35m-linux_x86_64.whl

Please select corresponding installation package (located at the package/ directory) according to

different python versions and processor architectures:

⚫ Python3.5 for x86_64：rknn_toolkit-1.2.1-cp35-cp35m-linux_x86_64.whl

⚫ Python3.5 for arm_x64：rknn_toolkit-1.2.1-cp35-cp35m-linux_aarch64.whl

⚫ Python3.6 for x86_64：rknn_toolkit-1.2.1-cp36-cp36m-linux_x86_64.whl

⚫ Python3.6 for arm_x64: rknn_toolkit-1.2.1-cp36-cp36m-linux_aarch64.whl

⚫ Python3.6 for Windows x86_64: rknn_toolkit-1.2.1-cp36-cp36m-win_amd64.whl

⚫ Python3.6 for Mac OS X: rknn_toolkit-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl

3.1.2 Install by the Docker Image

In docker folder, there is a Docker image that has been packaged for all development requirements,

Users only need to load the image and can directly use RKNN-toolkit, detailed steps are as follows:

1. Install Docker

 Please install Docker according to the official manual:

 https://docs.docker.com/install/linux/docker-ce/ubuntu/

2. Load Docker image

 Execute the following command to load Docker image:

docker load --input rknn-toolkit-1.2.1-docker.tar.gz

After loading successfully, execute “docker images” command and the image of rknn-toolkit

appears as follows:

REPOSITORY TAG IMAGE ID CREATED SIZE

rknn-toolkit 1.2.1 afa50891bb31 1 hours ago 2.18GB

3. Run image

https://docs.docker.com/install/linux/docker-ce/ubuntu/

 7

 Execute the following command to run the docker image. After running, it will enter the bash

 environment.

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-

toolkit:1.2.1 /bin/bash

 If you want to map your own code, you can add the “-v <host src folder>:<image dst folder>”

 parameter, for example:

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v

/home/rk/test:/test rknn-toolkit:1.2.1 /bin/bash

4. Run demo

cd /example/mobilenet_v1

python test.py

3.2 Usage of RKNN-Toolkit

Depending on the type of model and device, RKNN-Toolkit can be used in the following three kinds

of scenarios, the usage flow in each scenario is described in detail in the following sections.

Note: for a detailed description of all the interfaces involved in the flow, refer to Section 3.4.

3.2.1 Scenario 1: Inference for Simulation on PC

In this scenario, RKNN-Toolkit is running on PC. Users perform simulation for RK1808 with the

model provided by the users to complete inference or performance evaluation.

Depending on the type of model, this scenario can be divided into two sub-scenarios: one scenario is

that the model is a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet model,

and the other scenario is that the model is an RKNN model which is a proprietary model of Rockchip with

the file suffix “rknn”.

Note: This scenario only supported on x86_64 Linux.

 8

3.2.1.1 Sub-scenario 1: run the non-RKNN model

When running a non-RKNN model, the RKNN-Toolkit usage flow is shown below:

Start

Create RKNN object to initialize RKNN

SDK environment

Call config interface to set pre-processing

parameters of model

Call load_caffe, load_tensorflow,

load_tflite, load_onnx, load_darknet

interface to load original Caffe,

TensorFlow, TensorFlow Lite, ONNX or

Darknet model

Call build interface to build RKNN model

Call export_rknn

interface to export

RKNN model

Call inference interface to

perform inference with input

to get results

Call eval_perf interface to

evaluate performance of model to

get the running time of each layer

and total running time of model

Call init_runtime interface

to initialize the runtime

environment

End

Call release interface to release RKNN

object

Call eval_memory interface

to get memory useage when

model running.

Figure 1 Usage flow of RKNN-Toolkit when running a non-RKNN model on PC

 Note:

 1. The above steps should be performed in order.

 2.The model exporting step marked in the blue box is not necessary. If you exported, you can use

load_rknn to load it later on.

 3. The order of model inference, performance evaluation and memory evaluation steps marked in red

box is not fixed, it depends on the actual demand.

 4. Only when the target hardware platform is RK1808, TB-RK1808S0 AI Compute Stick, RK3399Pro

or RK3399Pro Linux, we can call eval_memory interface.

 9

3.2.1.2 Sub-scenario 2: run the RKNN model

When running an RKNN model, users do not need to set model pre-processing parameters, nor do

they need to build an RKNN model, the usage flow is shown in the following figure.

Call load_rknn interface to load RKNN

model

Call init_runtime interface to initialize the

runtime environment

Start

Create RKNN object to initialize RKNN

SDK environment

End

Call inference interface to

perform inference with

input to get results

Call eval_perf interface to evaluate

performance of model to get the

running time of each layer and total

running time of model

Call release interface to release RKNN

object

Call eval_memory interface

to get the memory usage

when model running.

Figure 2 Usage flow of RKNN-Toolkit when running an RKNN model on PC

Note:

 1. The above steps should be performed in order.

 2. The order of model inference, performance evaluation and memory evaluation steps marked in red

box is not fixed, it depends on the actual demand.

 3. We can call eval_memory only when the target hardware platform is RK3399Pro, RK1808 or

RK3399Pro Linux or TB-RK1808 AI Compute Stick.

 10

3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute

Stick) connected with PC

In this Scenario, PC is connected to the development board through USB interface, RKNN-Toolkit

transfers the built or exported RKNN model to RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute

Stick) and performs the model inference to obtain result and performance information from RK3399Pro

(or RK1808 or TB-RK1808S0 AI Compute Stick).

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet), the usage

flow and precautions of RKNN-Toolkit are the same as the sub-scenario 1 of the scenario 1(see Section

3.2.1.1).

If the model is an RKNN model (file suffix is “rknn”), the usage flow and precautions of RKNN-

Toolkit are the same as the sub-scenario 2 of the scenario 1(see Section 3.2.1.2).

In addition, in this scenario, we also need to complete the following two steps:

1. Make sure the USB OTG of development board is connected to PC, and call list_devices interface

will show the device. More information about “list_devices” interface can see Scction 3.5.13.

2. “Target” parameter and “device_id” parameter need to be specified when calling “init_runtime”

interface to initialize the runtime environment, where “target” indicates the type of hardware, optional

values are “rk1808” and “rk3399pro”. When multiple devices are connected to PC, “device_id” parameter

needs to be specified. It is a string which can be obtained by calling “list_devices” interface, for example:

all device(s) with adb mode:

[]

all device(s) with ntb mode:

['TB-RK1808S0', '515e9b401c060c0b']

Runtime initialization code is as follows:

RK3399Pro

ret = init_runtime(target='rk3399pro', device_id='VGEJY9PW7T')

……

RK1808

 11

ret = init_runtime(target='rk1808', device_id='515e9b401c060c0b')

TB-RK1808S0 AI Compute Stick

ret = init_runtime(target='rk1808', device_id='TB-RK1808S0')

 Note: Currently, RK1808, TB-RK1808S0 AI Compute Stick support ADB or NTB. When we use

multiple devices on PC or RK3399Pro Linux Development Board, all devices should use same mode, both

are ADB or both are NTB.

3.2.3 Scenario 3: Inference on RK3399Pro Linux development board

In this scenario, RKNN-Toolkit is installed in RK3399Pro Linux system directly. The built or imported

RKNN model runs directly on RK3399Pro to obtain the actual inference results or performance information

of the model.

For RK3399Pro Linux development board, the usage flow of RKNN-Toolkit depends on the type of

model. If the model is a non-RKNN model, the usage flow is the same as that in the sub-scenario 1 of

scenario 1(see Section 3.2.1.1), otherwise, please refer to the usage flow in the sub-scenario 2 of

scenario1(see Section 3.2.1.2).

3.3 Hybrid Quantization

RKNN-Toolkit supports hybrid quantization from version 1.0.0.

Before version 1.0.0, the quantization feature can minimize model accuracy based on improved model

performance. But for some models, the accuracy has dropped a bit. In order to allow users to better balance

performance and accuracy, we add new feature hybrid quantization from version 1.0.0. Users can decide

which layers to quantize or not to quantize. Users can also modify the quantization parameters according

to their own experience.

Note:

1. The example directory provides a hybrid quantization example named ssd_mobilenet_v2, which

can be referenced to this example for hybrid quantification practice.

2. Multiple inputs model can not do hybrid quantization currently.

 12

3.3.1 Instructions of hybrid quantization

Currently, we have three kind of ways to use hybrid quantization:

1. Convert quantized layer to non-quantized layer. This way may improve accuracy, but

performance will drop.

2. Convert non-quantized layer to quantized layer. This way may improve performance, but

accuracy may drop.

3. Modify quantization parameters of pointed quantized layer. This way may improve accuracy or

reduce accuracy, it has no effect on performance.

PS: Only one method can be used at a time.

3.3.2 Hybrid quantization profile

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile,

which is briefly described in this section.

When we call the hybrid quantization interface hybrid_quantization_step1, a yaml configuration file

of {model_name}.quantization.cfg is generated in the current directory. The configuration file format is as

follows：

%YAML 1.2

hybrid_quantization_action can be delete, add or modify, only one of

these can be set at a hybrid quantization

hybrid_quantization_action: delete

'@attach_concat_1/out0_0:out0':

 dtype: asymmetric_quantized

 method: layer

 max_value:

 - 10.568130493164062

 min_value:

 - -53.3099365234375

 zero_point:

 - 213

 scale:

 - 0.25050222873687744

 qtype: u8

 13

……

'@FeatureExtractor/MobilenetV2/Conv/Conv2D_230:bias':

 dtype: None

First line is the version of yaml. Second line is separator. Third line is comment. Followed by the main

content of the configuration file.

The first line of the body of the configuration file is the operation when using hybrid quantization.

When using the hybrid quantization function, the user needs to indicate which way to use the hybrid

quantization, that is, the three ways mentioned in the previous section. The corresponding actions are:

"delete", "add", and "modify". The default value is "delete".

Next is a list of model layers, each layer is a dictionary. The key of each dictionary is composed of

@{layer_name}_{layer_id}:[weight/bias/out{port}], where layer_name is the name of this layer and

layer_id is an identification of this layer. We usually quantize weight/bias/out when do quantization, and

use multiple out0, out1, etc. for multiple outputs. The value of the dictionary is the quantization parameter.

If the layer is not be quantized, there is only “dtype” item, and the value of “dtype” is None.

3.3.3 Usage flow of hybrid quantization

When using the hybrid quantization function, it can be done in four steps.

Step1, load the original model and generate a quantize configuration file, a model structure file and a

model weight bias file. The specific interface call process is as follows:

 14

Start

Create RKNN object to initialize
RKNN SDK environment

Call config interface to set pre-
processing parameters of model

Call load_caffe、load_tensorflow、
load_tflite、load_onnx or

load_darknet et interface to load
original Caffe、TensorFlow、

TensorFlow Lite、ONNX or Darknet
model

Call hybrid_quantization_step1
interface to generate quantization
profile({model_name}.quantization.c

fg), model structure
file({model_name}.json), model

weight bias file({model_name}.data)

Call release interface to release
RKNN object

End

Figure 3 call process of hybrid quantization step 1

Step 2, Modify the quantization configuration file generated in the first step.

⚫ If some quantization layer is changed to a non-quantization layer, find the layer that is not to be

quantized, and delete the out item of its input node and the weight/bias item of this layer from

the quantization configuration file.

⚫ If some layers are changed from non-quantization to quantization, change the value of the

hybrid_quantization_action item in the quantization configuration file to "add", then find the

layer in the quantization configuration file and change its dtype from None to

asymmetric_quantized or dynamic_fixed_point. Note: dtype needs to be consistent with other

quantization layers

⚫ If the quantization parameter is to be modified, the value of the hybrid_quantization_action item

in the quantization configuration file is changed to "modify", and then the quantization parameter

 15

of the specified layer can be directly modified.

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows:

Start

Create RKNN object to initialize
RKNN SDK environment

Call config interface to set pre-
processing parameters of model

Call hybrid_quantization_step2
interface to build hybrid quantized

RKNN model

Call release interface to release
RKNN object

End

Call export_rknn interface to
export RKNN model

Figure 4 call process of hybrid quantization step 3

Step 4, use the RKNN model generated in the previous step to inference.

3.4 Model Segmentation

RKNN-Toolkit supports model segmentation from version 1.2.0. This feature is used in a scenario

where multiple models run simultaneously. A single model can be divided into multiple segments to be

executed on the NPU, thereby adjusting the execution time of multiple models occupying the NPU,

avoiding that one model occupies too much execution time, while other model was not implemented in

time.

The chance of each segment preempting the NPU is equal. After a segment execution is completed, it

will take the initiative to give up the NPU, if the model has the next segment, it will be added to the end of

the command queue again. At this time, if there are segments of other models waiting to be executed,

 16

segmentation of other models will be performed in the order of the command queue. Note: The model that

does not have model segmentation enabled is by default a segment.

The ordinary RKNN model can be divided into multiple segments by calling the

export_rknn_sync_model interface. For the detailed usage of this interface, please refer to section 3.7.13.

If you are in a single model running scenario, you need to turn it off, just do not use a segmentation

RKNN model. Because turning on model segmentation reduces the efficiency of single model execution,

however, the multi-model running scene does not reduce the efficiency of model execution. Therefore, it

is only recommended to use this feature in scenarios where multiple models are running at the same time.

3.5 Example

The following is the sample code for loading TensorFlow Lite model (see the example/mobilenet_v1

directory for details), if it is executed on PC, the RKNN model will run on the simulator.

import numpy as np

import cv2

from rknn.api import RKNN

def show_outputs(outputs):

 output = outputs[0][0]

 output_sorted = sorted(output, reverse=True)

 top5_str = 'mobilenet_v1\n-----TOP 5-----\n'

 for i in range(5):

 value = output_sorted[i]

 index = np.where(output == value)

 for j in range(len(index)):

 if (i + j) >= 5:

 break

 if value > 0:

 topi = '{}: {}\n'.format(index[j], value)

 else:

 topi = '-1: 0.0\n'

 top5_str += topi

 print(top5_str)

def show_perfs(perfs):

 perfs = 'perfs: {}\n'.format(outputs)

 print(perfs)

if __name__ == '__main__':

 17

 # Create RKNN object

 rknn = RKNN()

 # pre-process config

 print('--> config model')

 rknn.config(channel_mean_value='103.94 116.78 123.68 58.82',

reorder_channel='0 1 2')

 print('done')

 # Load tensorflow model

 print('--> Loading model')

 ret = rknn.load_tflite(model='./mobilenet_v1.tflite')

 if ret != 0:

 print('Load mobilenet_v1 failed!')

 exit(ret)

 print('done')

 # Build model

 print('--> Building model')

 ret = rknn.build(do_quantization=True, dataset='./dataset.txt')

 if ret != 0:

 print('Build mobilenet_v1 failed!')

 exit(ret)

 print('done')

 # Export rknn model

 print('--> Export RKNN model')

 ret = rknn.export_rknn('./mobilenet_v1.rknn')

 if ret != 0:

 print('Export mobilenet_v1.rknn failed!')

 exit(ret)

 print('done')

 # Set inputs

 img = cv2.imread('./dog_224x224.jpg')

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 # init runtime environment

 print('--> Init runtime environment')

 ret = rknn.init_runtime()

 if ret != 0:

 print('Init runtime environment failed')

 exit(ret)

 print('done')

 # Inference

 print('--> Running model')

 outputs = rknn.inference(inputs=[img])

 show_outputs(outputs)

 18

 print('done')

 # perf

 print('--> Begin evaluate model performance')

 perf_results = rknn.eval_perf(inputs=[img])

 print('done')

 rknn.release()

 Where dataset.txt is a text file containing the path of the test image. For example, if we now have a

picture of dog_224x224.jpg in the example/mobilenet_v1 directory, then the corresponding content in

dataset.txt is as follows:

dog_224x224.jpg

 When performing model inference, the result of this demo is as follows:

-----TOP 5-----

[156]: 0.8837890625

[155]: 0.0677490234375

[188 205]: 0.00867462158203125

[188 205]: 0.00867462158203125

[263]: 0.0057525634765625

When evaluating model performance, the result of this demo is as follows (since it is executed on

PC, the result is for reference only).

==

 Performance

==

Layer ID Name Time(us)

0 tensor.transpose_3 72

44 convolution.relu.pooling.layer2_2 363

59 convolution.relu.pooling.layer2_2 201

45 convolution.relu.pooling.layer2_2 185

60 convolution.relu.pooling.layer2_2 243

46 convolution.relu.pooling.layer2_2 98

61 convolution.relu.pooling.layer2_2 149

47 convolution.relu.pooling.layer2_2 152

62 convolution.relu.pooling.layer2_2 120

48 convolution.relu.pooling.layer2_2 116

63 convolution.relu.pooling.layer2_2 101

49 convolution.relu.pooling.layer2_2 185

64 convolution.relu.pooling.layer2_2 101

50 convolution.relu.pooling.layer2_2 111

65 convolution.relu.pooling.layer2_2 109

 19

51 convolution.relu.pooling.layer2_2 213

66 convolution.relu.pooling.layer2_2 109

52 convolution.relu.pooling.layer2_2 213

67 convolution.relu.pooling.layer2_2 109

53 convolution.relu.pooling.layer2_2 213

68 convolution.relu.pooling.layer2_2 109

54 convolution.relu.pooling.layer2_2 213

69 convolution.relu.pooling.layer2_2 109

55 convolution.relu.pooling.layer2_2 213

70 convolution.relu.pooling.layer2_2 109

56 convolution.relu.pooling.layer2_2 174

71 convolution.relu.pooling.layer2_2 219

57 convolution.relu.pooling.layer2_2 353

58 fullyconnected.relu.layer_3 110

Total Time(us): 4772

FPS(800MHz): 209.56

==

3.6 RKNN-Toolkit API description

3.6.1 RKNN object initialization and release

The initialization/release function group consists of API interfaces to initialize and release the

RKNN object as needed. The RKNN() must be called before using all the API interfaces of RKNN-

Toolkit, and call the release() method to release the object when task finished.

When we init RKNN object, we can set verbose and verbose_file parameters, used to show detailed

log information of model loading, building and so on. The data type of verbose parameter is bool. If we

set the value of this parameter to True, the RKNN Toolkit will show detailed log information on screen.

The data type of verbose_file is string. If we set the value of this parameter to a file path, the detailed log

information will be written to this file (the verbose also need be set to True).

The sample code is as follows:

Show the detailed log information on screen, and saved to

mobilenet_build.log

rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log')

Only show the detailed log information on screen.

rknn = RKNN(verbose=True)

…

rknn.release()

 20

3.6.2 Loading non-RKNN model

 RKNN-Toolkit currently supports Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet five kinds of

non-RKNN models. There are different calling interfaces when loading models, the loading interface of

these five models is described in detail below.

3.6.2.1 Loading Caffe model

API load_caffe

Description Load Caffe model

Parameter model: The path of Caffe model structure file (suffixed with “.prototxt”).

proto: Caffe model format (valid value is ‘caffe’ or ‘lstm_caffe’). We use ‘lstm_caffe’ when

the model is RNN model.

blobs: The path of Caffe model binary data file (suffixed with “.caffemodel”).

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

Load the mobilenet_v2 Caffe model in the current path

ret = rknn.load_caffe(model='./mobilenet_v2.prototxt',

 proto='caffe',

 blobs='./mobilenet_v2.caffemodel')

3.6.2.2 Loading TensorFlow model

API load_tensorflow

Description Load TensorFlow model

Parameter tf_pb: The path of TensorFlow model file (suffixed with “.pb”).

inputs: The input node of model, input with multiple nodes is supported now. All the input

node string are placed in a list.

 21

input_size_list: The size and number of channels of the image corresponding to the input

node. As in the example of mobilenet_v1 model, the input_size_list parameter should be

set to [224,224,3].

outputs: The output node of model, output with multiple nodes is supported now. All the

output nodes are placed in a list.

predef_file: In order to support some controlling logic, a predefined file in npz format needs

to be provided. This predefined fie can be generated by the following function call:

np.savez(‘prd.npz’, [placeholder name]=prd_value)。If there are / in placeholder name, use

to replace.

mean_values: The mean values of the input. This parameter needs to be set only if the

imported model is a quantized model, and three channels of input of model have the same

mean value.

std_values: The scale value of the input. This parameter needs to be set only if the imported

model is a quantized model.

Return

value

0: Import successfully

-1: Import failed

 The sample code is as follows:

Load ssd_mobilenet_v1_coco_2017_11_17 TF model in the current path

ret = rknn.load_tensorflow(

 tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',

 inputs=['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0

 /BatchNorm/batchnorm/mul_1'],

 outputs=['concat', 'concat_1'],

 input_size_list=[[300, 300, 3]])

3.6.2.3 Loading TensorFlow Lite model

API load_tflite

Description Load TensorFlow Lite model.

 22

Note:

RKNN-Toolkit uses the tflite schema commits as in link:

https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/sche

ma.fbs

commit hash:

0c4f5dfea4ceb3d7c0b46fc04828420a344f7598

Because the tflite schema may not compatible with each other, tflite models in older or

newer schema may not be imported successfully.

Parameter model: The path of TensorFlow Lite model file (suffixed with “.tflite”).

Return

Value

0: Import successfully

-1: Import failed

 The sample code is as follows:

Load the mobilenet_v1 TF-Lite model in the current path

ret = rknn.load_tflite(model = './mobilenet_v1.tflite')

3.6.2.4 Loading ONNX model

API load_onnx

Description Load ONNX model

Parameter model: The path of ONNX model file (suffixed with “.onnx”)

Return

Value

0: Import successfully

-1: Import failed

The sample code is as follows:

Load the arcface onnx model in the current path

ret = rknn.load_onnx(model = './arcface.onnx')

https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs

 23

3.6.2.5 Loading Darknet model

API load_darknet

Description Load Darknet model

Parameter model: The path of Darknet model structure file (suffixed with “.cfg”).

weight: The path of weight file (suffixed with “.weight”).

Return

Value

0: Import successfully

-1: Import failed

 The sample code is as follows:

Load the yolov3-tiny darknet model in the current path

ret = rknn.load_darknet(model = './yolov3-tiny.cfg',

 weight= './yolov3.weights')

3.6.3 RKNN model configuration

 Before the RKNN model is built, the model needs to be configured first through the config interface.

API config

Description Set model parameters

Parameter batch_size: The size of each batch of data sets. The default value is 100. When quantifying,

the amount of data fed in each batch will be determined according to this parameter to

correct the quantization results.

channel_mean_value: It is a list contains four value (M0, M1, M2, S0), where the first three

value are all mean parameters, the latter value is a scale parameter. If the input data is

three-channel data with (Cin0, Cin1, Cin2), after preprocessing, the shape of output data is

(Cout0, Count1, Count2), calculated as follows:

Cout0 = (Cin0 - M0)/S0

Cout1 = (Cin1 - M1)/S0

Cout2 = (Cin2 - M2)/S0

Note: for three-channel input only, other channel formats can be ignored.

 24

For example, if input data needs to be normalized to [-1,1], this parameter should be set to

(128 128 128 128). If input data needs to be normalized to [-1,1], this parameter should be

set to (0 0 0 255). If there are multiple inputs, the corresponding parameters for each input

is split with ‘#’, such as ’128 128 128 128#128 128 128 128’.

epochs: Number of iterations in quantization. Quantization parameter calibration is

performed with specified data at each iteration. Default value is -1, in this situation, the

number of iteration is automatically calculated based on the amount of data in the dataset.

reorder_channel: A permutation of the dimensions of input image (for three-channel input

only, other channel formats can be ignored). The new tensor dimension i will correspond

to the original input dimension reorder_channel[i]. For example, if the original image is

RGB format, ‘2 1 0’ indicates that it will be converted to BGR.

If there are multiple inputs, the corresponding parameters for each input is split with ‘#’,

such as ’0 1 2#0 1 2’.

Note: each value of reorder_channel must not be set to the same value.

need_horizontal_merge: Indicates whether to merge horizontal, the default value is False.

If the model is inception v1/v3/v4, it is recommended to enable this option, it can improve

the performance of inference.

quantized_dtype: Quantization type, the quantization types currently supported are

asymmetric_quantized-u8,dynamic_fixed_point-8,dynamic_fixed_point-16. The default

value is asymmetric_quantized-u8.

Return

Value

None

 The sample code is as follows:

model config

rknn.config(channel_mean_value='103.94 116.78 123.68 58.82',

reorder_channel='0 1 2',

need_horizontal_merge=True)

 25

3.6.4 Building RKNN model

API build

Description Build corresponding RKNN model according to imported model (Caffe, TensorFlow,

TensorFlow Lite, etc.).

Parameter do_quantization: Whether to quantize the model, optional values are True and False.

dataset: A input data set for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture(jpg or png) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

If there are multiple inputs, the corresponding files are divided by space. Such as:

a.jpg a2.jpg

b.jpg b2.jpg

or

a.npy a2.npy

b.npy b2.npy

pre_compile: If this option is set to True, it may reduce the size of the model file, increase

the speed of the first startup of the model on the device. However, if this option is enabled,

the built model can be only run on the hardware platform, and the inference or

performance evaluation cannot be performed on simulator. If the hardware is updated, the

corresponding model need to be rebuilt.

Note:

 26

1. we can not use pre compile on RK3399Pro Linux development board or Windows PC

or Mac OS X PC.

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later can not run on device

installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated

by old RKNN-Toolkit (version < 1.0.0) can not run on device installed new NPU driver

(NPU drvier version >= 0.9.6). We can call get_sdk_version interface to fetch driver

version.

3. If there are multiple inputs, this option needs to be set to False.

rknn_batch_size：batch size of input, default is 1. If greater than 1, NPU can inference

multiple frames of input image or input data in one inference. For example, original input

of MobileNet is [1, 224, 224, 3], output shape is [1, 1001]. When rknn_batch_size is set to

4, the input shape of MobileNet becomes [4, 224, 224, 3], output shape becomes [4, 1001].

Note：

1. The adjustment of rknn_batch_size does not improve the performance of the general

model on the NPU, but it will significantly increase memory consumption and

increase the delay of single frame.

2. The adjustment of rknn_batch_size can reduce the consumption of the ultra-small

model on the CPU and improve the average frame rate of the ultra-small model.

(Applicable to the model is too small, CPU overhead is greater than the NPU

overhead)

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the

memory usage is too large and the reasoning fails.

4. After the rknn_batch_size is modified, the shape of input and output will be

modified. So the inputs of inference should be set to correct size. We also need to

process the returned outputs on post processing.

 27

Return

value

0: Build successfully

-1: Build failed

 The sample code is as follows:

Build and quantize RKNN model

ret = rknn.build(do_quantization=True, dataset='./dataset.txt')

3.6.5 Export RKNN model

 In order to make the RKNN model reusable, an interface to produce a persistent model is provided.

After building RKNN model, export_rknn() is used to save an RKNN model to a file. If you have an

RKNN model now, it is not necessary to call export_rknn() interface again.

API export_rknn

Description Save RKNN model in the specified file (suffixed with “.rknn”).

Parameter export_path: The path of generated RKNN model file.

Return

Value

0: Export successfully

-1: Export failed

The sample code is as follows:

save the built RKNN model as a mobilenet_v1.rknn file in the current

 # path

ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')

3.6.6 Loading RKNN model

API load_rknn

Description Load RKNN model

Parameter path: The path of RKNN model file.

load_model_in_npu: Whether to load RKNN model in NPU directly. The path parameter

should fill in the path of the model in NPU. It can be set to True only when RKNN-Toolkit

 28

run on RK3399Pro Linux or NPU device(RK3399Pro, RK1808 or TB-RK1808 AI Compute

Stick) is connected. Default value is False.

Return

Value

0: Load successfully

-1: Load failed

The sample code is as follows:

Load the mobilenet_v1 RKNN model in the current path

ret = rknn.load_rknn(path='./mobilenet_v1.rknn')

3.6.7 Initialize the runtime environment

Before inference or performance evaluation, the runtime environment must be initialized. This

interface determines which type of runtime hardware is specified to run model.

API init_runtime

Description Initialize the runtime environment. Set the device information (hardware platform, device

ID). Determine whether to enable debug mode to obtain more detailed performance

information for performance evaluation.

Parameter target: Target hardware platform, now supports “rk3399pro”, “rk1808”. The default value

is “None”, which indicates model runs on default hardware platform and system.

Specifically, if RKNN-Toolkit is used in PC, the default device is simulator, and if RKNN-Toolkit

is used in RK3399Pro Linux development board, the default device is RK3399Pro. The

“rk1808” includes TB-RK1808 AI Compute Stick.

device_id: Device identity number, if multiple devices are connected to PC, this parameter

needs to be specified which can be obtained by calling “list_devices” interface. The default

value is “None “.

Note: Mac OS X platform does not supple multiple devices.

perf_debug: Debug mode option for performance evaluation. In debug mode, the running

time of each layer can be obtained, otherwise, only the total running time of model can be

 29

given. The default value is False.

eval_mem: Whether enter memory evaluation mode. If set True, we can call eval_memory

interface later to fetch memory usage of model running. The default value is False.

async_mode: Whether to use asynchronous mode. When calling the inference interface, it

involves setting the input picture, model running, and fetching the inference result. If the

asynchronous mode is enabled, setting the input of the current frame will be performed

simultaneously with the inference of the previous frame, so in addition to the first frame,

each subsequent frame can hide the setting input time, thereby improving performance.

In asynchronous mode, the inference result returned each time is the previous frame. The

default value for this parameter is False.

Return

Value

0: Initialize the runtime environment successfully

-1: Initialize the runtime environment failed

The sample code is as follows:

Initialize the runtime environment

ret = rknn.init_runtime(target='rk1808', device_id='012345789AB')

if ret != 0:

 print('Init runtime environment failed')

 exit(ret)

3.6.8 Inference with RKNN model

 This interface kicks off the RKNN model inference and get the result of inference.

API inference

Description Use the model to perform inference with specified input and get the inference result.

Detailed scenarios are as follows:

1. If RKNN-Toolkit is running on PC and the target is set to " rk3399pro " or " rk1808 " when

initializing the runtime environment, the inference of model is performed on the specified

hardware platform. The “rk1808” includes TB-RK1808 AI Compute Stick.

 30

2. If RKNN-Toolkit is running on PC and the target is not set when initializing the runtime

environment, the inference of model is performed on the simulator.

3. If RKNN-Toolkit is running on RK3399Pro Linux development board, the inference of

model is performed on the actual hardware.

Parameter inputs: Inputs to be inferred, such as images processed by cv2. The object type is ndarray

list.

data_type: The numerical type of input data. Optional values are ’float32’, ‘float16’, ‘int8’,

‘uint8’, ‘ing16’. The default value is ’uint8’.

data_format: The shape format of input data. Optional values are “nchw”, “nhwc”. The

default value is ‘nhwc’.

outputs: The object to store final output data, the object type is ndarray list. The shape and

dtype of outputs are consistent with the return value of this interface. The default value is

None, which indicates the dtype of return value is float32.

inputs_pass_through: Pass the input transparently to the NPU driver. In non-transparent

mode, the tool will reduce the mean, divide the variance, etc. before the input is passed to

the NPU driver; in transparent mode, these operations will not be performed. The value of

this parameter is an array. For example, to pass input0 and not input1, the value of this

parameter is [1, 0]. The default value is None, which means that all input is not transparent.

Return

Value

results: The result of inference, the object type is ndarray list。

Note: Versions prior to 1.0.0 will convert output shape from "NHWC" to "NCHW".

Starting from version 1.1.0, the shape of the output will be consistent with the original

model, and no longer convert from "NHWC" to "NCHW". Please pay attention to the

location of the channel when performing post processing.

The sample code is as follows:

For classification model, such as mobilenet_v1, the code is as follows (refer to example/mobilenet_v1

for the complete code):

 31

Preform inference for a picture with a model and get a top-5 result

……

outputs = rknn.inference(inputs=[img])

show_outputs(outputs)

……

The result of top-5 is as follows:

-----TOP 5-----

[156]: 0.8837890625

[155]: 0.0677490234375

[188 205]: 0.00867462158203125

[188 205]: 0.00867462158203125

[263]: 0.0057525634765625

For object detection model, such as mobilenet-ssd, the code is as follows (refer to example/ mobilent-

ssd for the complete code):

Perform inference for a picture with a model and get the result of object

detection

……

outputs = rknn.inference(inputs=[image])

……

After the inference result is post-processed, the final output is shown in the following picture (the

color of the object border is randomly generated, so the border color obtained will be different each time):

 32

Figure 3 mobilenet-ssd inference result

3.6.9 Evaluate model performance

API eval_perf

Description Evaluate model performance.

Detailed scenarios are as follows:

1. If running on PC and not setting the target when initializing the runtime environment,

the performance information is obtained from simulator, which contains the running time

of each layer and the total running time of model.

2. If running on RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick which connected to

PC and setting perf_debug to False when initializing runtime environment, the

performance information is obtained from RK3399Pro or RK1808, which only contains the

total running time of model. And if the perf_debug is set to True, the running time of each

 33

layer will also be captured in detail.

3. If running on RK3399Pro Linux development board and setting perf_debug to False when

initializing runtime environment, the performance information is obtained from

RK3399Pro, which only contains the total running time of model. And if the perf_debug is

set to True, the running time of each layer will also be captured in detail.

Parameter inputs: Input data, such as images processed by cv2. The object type is ndarray list.

data_type: The numerical type of input data. Optional values are ’float32’, ‘float16’, ‘int8’,

‘uint8’, ‘ing16’. The default value is ’uint8’.

data_format: The shape format of input data. Optional values are “nchw”, “nhwc”. The

default value is ‘nhwc’.

is_print: Whether to print performance evaluation results in the canonical format. The

default value is True.

Return

Value

perf_result: Performance information. The object type is dictionary.

If running on device (RK3399Pro or RK1808) and set perf_debug to False when initializing

the runtime environment, the dictionary gives only one field ‘total_time’, example is as

follows:

{

‘total_time’: 1000

}

In other scenarios, the obtained dictionary has one more filed called ‘layers’ which is also

a dictionary type. The ‘layers’ takes the ID of each layer as the key, and its value is one

dictionary which contains 'name' (name of layer), 'operation' (operator, which is only

available when running on the hardware platform), 'time'(time-consuming of this layer).

Example is as follows:

{

'total_time', 4568,

'layers', {

 '0': {

 'name': 'convolution.relu.pooling.layer2_2',

 'operation': 'CONVOLUTION',

 'time', 362

 34

 }

 '1': {

 'name': 'convolution.relu.pooling.layer2_2',

 'operation': 'CONVOLUTION',

 'time', 158

 }

 }

}

 The sample code is as follows:

Evaluate model performance

……

rknn.eval_perf(inputs=[image], is_print=True)

……

 For mobilenet-ssd in example directory, the performance evaluation results are printed as

follows(The following is the result obtained on the PC simulator. The details obtained when connecting the

hardware device are slightly different from the result.):

==

 Performance

==

Layer ID Name Time(us)

0 tensor.transpose_3 125

71 convolution.relu.pooling.layer2_3 325

105 convolution.relu.pooling.layer2_2 331

72 convolution.relu.pooling.layer2_2 437

106 convolution.relu.pooling.layer2_2 436

73 convolution.relu.pooling.layer2_2 223

107 convolution.relu.pooling.layer2_2 374

74 convolution.relu.pooling.layer2_2 327

108 convolution.relu.pooling.layer2_3 533

75 convolution.relu.pooling.layer2_2 201

109 convolution.relu.pooling.layer2_2 250

76 convolution.relu.pooling.layer2_2 320

110 convolution.relu.pooling.layer2_2 250

77 convolution.relu.pooling.layer2_2 165

111 convolution.relu.pooling.layer2_2 257

78 convolution.relu.pooling.layer2_2 319

112 convolution.relu.pooling.layer2_2 257

79 convolution.relu.pooling.layer2_2 319

113 convolution.relu.pooling.layer2_2 257

80 convolution.relu.pooling.layer2_2 319

114 convolution.relu.pooling.layer2_2 257

81 convolution.relu.pooling.layer2_2 319

 35

115 convolution.relu.pooling.layer2_2 257

82 convolution.relu.pooling.layer2_2 319

83 convolution.relu.pooling.layer2_2 181

27 tensor.transpose_3 48

84 convolution.relu.pooling.layer2_2 45

28 tensor.transpose_3 6

116 convolution.relu.pooling.layer2_3 297

85 convolution.relu.pooling.layer2_2 233

117 convolution.relu.pooling.layer2_2 311

86 convolution.relu.pooling.layer2_2 479

87 convolution.relu.pooling.layer2_2 249

35 tensor.transpose_3 29

88 convolution.relu.pooling.layer2_2 30

36 tensor.transpose_3 5

89 convolution.relu.pooling.layer2_2 125

90 convolution.relu.pooling.layer2_3 588

91 convolution.relu.pooling.layer2_2 96

41 tensor.transpose_3 10

92 convolution.relu.pooling.layer2_2 11

42 tensor.transpose_3 5

93 convolution.relu.pooling.layer2_2 31

94 convolution.relu.pooling.layer2_3 154

95 convolution.relu.pooling.layer2_2 50

47 tensor.transpose_3 6

96 convD_2 6

48 tensor.transpose_3 4

97 convolution.relu.pooling.layer2_2 17

98 convolution.relu.pooling.layer2_3 153

99 convolution.relu.pooling.layer2_2 49

53 tensor.transpose_3 5

100 convolution.relu.pooling.layer2_2 6

54 tensor.transpose_3 4

101 convolution.relu.pooling.layer2_2 10

102 convolution.relu.pooling.layer2_2 21

103 fullyconnected.relu.layer_3 13

104 fullyconnected.relu.layer_3 8

Total Time(us): 10462

FPS(800MHz): 95.58

==

3.6.10 Evaluating memory usage

API eval_memory

Description Fetch memory usage when model is running on hardware platform.

Model must run on RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or RK3399Pro Linux.

 36

Note: When we use this API, the driver version must on 0.9.4 or later. We can get driver

version via get_sdk_version interface.

Parameter is_print: Whether to print performance evaluation results in the canonical format. The

default value is True.

Return

Value

memory_detail：Detail information of memory usage. Data format is dictionary.

Data shows as below：

{

'system_memory', {

 'maximum_allocation': 128000000,

 'total_allocation': 152000000

},

'npu_memory', {

 'maximum_allocation': 30000000,

 'total_allocation': 40000000

},

'total_memory', {

 'maximum_allocation': 158000000,

 'total_allocation': 192000000

}

}

⚫ The ‘system_memory’ means memory usage of system.

⚫ The ‘npu_memory’ means memory usage inside the NPU.

⚫ The ‘total_memory’ means the sum of system and npu`s memory usage.

⚫ The ‘maximum_allocation’ filed means the maximum memory usage(unit: Byte) from

start the model to dump the information. It is the peak memory usage.

⚫ The ‘total_allocation’ means the accumulation memory usage(unit: Byte) of allocate

memory from start the model to dump the information.

The sample code is as follows:

eval memory usage

……

memory_detail = rknn.eval_memory()

……

 For mobilenet_v1 in example directory, the memory usage when model running on RK1808 is printed

as follows:

 37

==

 Memory Profile Info Dump

==

System memory:

 maximum allocation : 41.53 MiB

 total allocation : 43.86 MiB

NPU memory:

 maximum allocation : 34.53 MiB

 total allocation : 34.54 MiB

Total memory:

 maximum allocation : 76.06 MiB

 total allocation : 78.40 MiB

INFO: When evaluating memory usage, we need consider

the size of model, current model size is: 4.10 MiB

==

3.6.11 Get SDK version

API get_sdk_version

Description Get API version and driver version of referenced SDK.

Note: Before we use this interface, we must load model and initialize runtime first. And this

API can only used on RK3399Pro、RK1808 or TB-RK1808 AI Compute Stick.

Parameter None

Return

Value

sdk_version：API and driver version. Data type is string.

The sample code is as follows：

Get SDK version

……

sdk_version = rknn.get_sdk_version()

……

 The SDK version looks like below：

==

RKNN VERSION:

 API: 1.2.0 (1190a71 build: 2019-09-25 12:39:14)

 38

 DRV: 1.2.0 (6897f97 build: 2019-09-25 10:17:41)

==

3.6.12 Hybrid Quantization

3.6.12.1 hybrid_quantization_step1

When using the hybrid quantization function, the main interface called in the first phase is

hybrid_quantization_step1, which is used to generate the model structure file ({model_name}.json), the

weight file ({model_name}.data), and the quantization configuration file ({model_name}.quantization.

Cfg). Interface details are as follows：

API hybrid_quantization_step1

Description Corresponding model structure files, weight files, and quantization profiles are generated

according to the loaded original model.

Parameter dataset: A input data set for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture(jpg or png) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

Return

Value

0: success

-1: failure

The sample code is as follows：

Call hybrid_quantization_step1 to generate quantization config

……

ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt')

 39

……

3.6.12.2 hybrid_quantization_step2

When using the hybrid quantization function, the primary interface for generating a hybrid quantized

RKNN model phase call is hybrid_quantization_step2. The interface details are as follows:

API hybrid_quantization_step2

Description The model structure file, the weight file, the quantization profile, and the correction data

set are received as inputs, and the hybrid quantized RKNN model is generated.

Parameter model_input: The model structure file generated in the first step, which is shaped like

"{model_name}.json". The data type is a string. Required parameter.

data_input: The model weight file generated in the first step, which is shaped like

"{model_name}.data". The data type is a string. Required parameter.

model_quantization_cfg: The modified model quantization profile, whick is shaped like

"{model_name}.quantization.cfg". The data type is a string. Required parameter.

dataset: A input data set for rectifying quantization parameters. Currently supports text file

format, the user can place the path of picture(jpg or png) or npy file which is used for

rectification. A file path for each line. Such as:

a.jpg

b.jpg

or

a.npy

b.npy

pre_compile: If this option is set to True, it may reduce the size of the model file, increase

the speed of the first startup of the model on the device. However, if this option is enabled,

the built model can be only run on the hardware platform, and the inference or

performance evaluation cannot be performed on simulator. If the hardware is updated, the

 40

corresponding model need to be rebuilt.

Note:

1. we can not use pre compile on RK3399Pro Linux development board or Windows PC

or Mac OS X PC.

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later can not run on device

installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated

by old RKNN-Toolkit (version < 1.0.0) can not run on device installed new NPU driver

(NPU drvier version >= 0.9.6). We can call get_sdk_version interface to fetch driver

version.

3. If there are multiple inputs, this option needs to be set to False.

Return

Value

0: success

-1: failure

The sample code is as follows：

Call hybrid_quantization_step2 to generate hybrid quantized RKNN model

……

ret = rknn.hybrid_quantization_step2(

model_input='./ssd_mobilenet_v2.json',

data_input='./ssd_mobilenet_v2.data',

model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg',

dataset='./dataset.txt')

……

3.6.13 Export a segmentation model

The function of this interface is to convert the ordinary RKNN model into a segment model, and the

position of the segment is specified by the user.

API export_rknn_sync_model

Description Insert a sync layer after the user-specified layer to segment the model and export the

segmented model.

Parameter input_model: the model which need segment. Data type is string, required.

 41

sync_uids: uids of the layer which need insert sync layer. RKNN-Toolkit will insert a sync

layer.

Note:

1. Uid can be obtained through the eval_perf interface, and perf_debug should be set to

True when call init_runtime interface. When we want to obtain uids, we need connect

a RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick, we can also obtain uids on

RK3399Pro Linux develop board.

2. The value of sync_uids cannot be filled in at will. It must be obtained by eval_perf

interface, Otherwise unpredictable consequences may occur.

output_model:

Return

Value

0: success

-1: failure

The sample code is as follows：

from rknn.api import RKNN

if __name__ == '__main__':

 rknn = RKNN()

 ret = rknn.export_rknn_sync_model(

input_model='./ssd_inception_v2.rknn',

 sync_uids=[206, 186, 152, 101, 96, 67, 18, 17],

 output_model='./ssd_inception_v2_sync.rknn')

 if ret != 0:

 print('export sync model failed.')

 exit(ret)

 rknn.release()

3.6.14 List Devices

API list_devices

Description List connected RK3399PRO/RK1808/TB-RK1808S0 AI Compute Stick。

Parameter None

 42

Return

Value

Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will

return two empty list.

For example, there are two TB-RK1808 AI Compute Sticks connected to PC, it`s return looks

like below:

adb_devices = []

ntb_devices = ['TB-RK1808S0', '515e9b401c060c0b']

The sample code is as follows：

from rknn.api import RKNN

if __name__ == '__main__':

 rknn = RKNN()

 rknn.list_devices()

 rknn.release()

The devices list looks like below：

all device(s) with adb mode:

['515e9b401c060c0b', 'XGOR2N4EZR']

3.6.15 Register Custom OP

API register_op

Description Register custom op。

Parameter op_path: rknnop file path of custom op build output

Return

Value

Void

The sample code is as follows. Note that this interface need be called before model converted. Please

refer to the "Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_CN" document for the use and

development of custom operators.

rknn.register_op('./resize_area/ResizeArea.rknnop')

 43

rknn.load_tensorflow(…)

	1 Overview
	2 Requirements/Dependencies
	3 User Guide
	3.1 Installation
	3.1.1 Install by pip command
	3.1.2 Install by the Docker Image

	3.2 Usage of RKNN-Toolkit
	3.2.1 Scenario 1: Inference for Simulation on PC
	3.2.1.1 Sub-scenario 1: run the non-RKNN model
	3.2.1.2 Sub-scenario 2: run the RKNN model

	3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute Stick) connected with PC
	3.2.3 Scenario 3: Inference on RK3399Pro Linux development board

	3.3 Hybrid Quantization
	3.3.1 Instructions of hybrid quantization
	3.3.2 Hybrid quantization profile
	3.3.3 Usage flow of hybrid quantization

	3.4 Model Segmentation
	3.5 Example
	3.6 RKNN-Toolkit API description
	3.6.1 RKNN object initialization and release
	3.6.2 Loading non-RKNN model
	3.6.2.1 Loading Caffe model
	3.6.2.2 Loading TensorFlow model
	3.6.2.3 Loading TensorFlow Lite model
	3.6.2.4 Loading ONNX model
	3.6.2.5 Loading Darknet model

	3.6.3 RKNN model configuration
	3.6.4 Building RKNN model
	3.6.5 Export RKNN model
	3.6.6 Loading RKNN model
	3.6.7 Initialize the runtime environment
	3.6.8 Inference with RKNN model
	3.6.9 Evaluate model performance
	3.6.10 Evaluating memory usage
	3.6.11 Get SDK version
	3.6.12 Hybrid Quantization
	3.6.12.1 hybrid_quantization_step1
	3.6.12.2 hybrid_quantization_step2

	3.6.13 Export a segmentation model
	3.6.14 List Devices
	3.6.15 Register Custom OP

