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1 Overview 

RKNN-Toolkit is a software development kit for users to perform model conversion, inference 

and performance evaluation on PC, RK3399Pro, RK1808, TB-RK1808S0 AI Compute Stick or 

RK3399Pro Linux development board users can easily complete the following functions through the 

provided python interface: 

1） Model conversion: support to convert Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet 

model to RKNN model, support RKNN model import/export, which can be used on hardware 

platform later. 

2） Quantization: support to convert float model to quantization model, currently support quantized 

methods including asymmetric quantization (asymmetric_quantized-u8) and dynamic fixed point 

quantization (dynamic_fixed_point-8 and dynamic_fixed_point-16). Starting with V1.0.0, 

RKNN-Toolkit began to support hybrid quantization. For a detailed description of hybrid 

quantization, please refer to Section 3.3. 

3） Model inference: able to simulate running model on PC and obtain the inference results. Also 

able to run model on specific hardware platform RK3399Pro (or RK3399Pro Linux development 

board), RK1808, TB-RK1808 AI Compute Stick and obtain the inference results. 

4） Performance evaluation: able to simulate running on PC and obtain the total time consumption 

and each layer’s time consumption of the model. Also able to run model with on-line debugging 

method on specific hardware platform RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or 

directly run on RK3399Pro Linux development board to obtain the total time consumption and 

each layer’s time consumption when the model runs completely once on the hardware. 

5） Memory evaluation: Evaluate system and NPU memory consumption at runtime of the model. It 

can obtain the memory usage through on-line debugging method when the model is running on 

specific hardware platform such as RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or 

RK3399Pro Linux development board. 
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6） Model pre-compilation: with pre-compilation techniques, model loading time can be reduced, 

and for some models, model size can also be reduced. However, the pre-compiled RKNN model 

can only be run on a hardware platform with an NPU, and this feature is currently only supported 

by the x86_64 Ubuntu platform. RKNN-Toolkit supports the model pre-compilation feature from 

version V0.9.5, and the pre-compilation method has been upgraded in V1.0.0. The upgraded 

precompiled model is not compatible with the old driver. 

7） Model segmentation: This function is used in a scenario where multiple models run 

simultaneously. A single model can be divided into multiple segments to be executed on the NPU, 

thereby adjusting the execution time of multiple models occupying the NPU, and avoiding other 

models because one model occupies too much execution time. RKNN-Toolkit supports this 

feature from version 1.2.0. This feature must be used on hardware with an NPU and the NPU 

driver version is greater than 0.9.8. 

8） Custom OP: If the model contains an OP that is not supported by RKNN-Toolkit, it will fail 

during the model conversion phase. At this time, you can use the custom layer feature to define 

an unsupported OP so that the model can be converted and run normally. RKNN-Toolkit supports 

this feature from version 1.2.0. Please refer to the <Rockchip_Developer_Guide_RKNN_-

Toolkit_Custom_OP_CN> document for the use and development of custom OP. 

Note: Some features are limited by the operating system or chip platform and cannot be used on some 

operating systems or platforms. The feature support list of each operating system (platform) is as follows: 

 Ubuntu 

16.04/18.04 

Windows 7/10 Debian 9.8 (ARM 

64) 

MacOS Mojave 

Model 

conversion 

yes yes yes yes 

Quantization yes yes yes yes 

Model inference yes yes yes yes 

Performance yes yes yes yes 
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evaluation 

Memory 

evaluation 

yes yes yes yes 

Model  

pre-compilation 

yes no no no 

Model 

segmentation 

yes yes yes yes 

Custom OP yes no no no 

Multiple inputs yes yes yes yes 

Batch inference yes yes yes yes 

List devices yes yes yes yes 

Query SDK 

version 

yes yes yes yes 
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2 Requirements/Dependencies 

This software development kit supports running on the Ubuntu, Windows, Mac OS X or Debian 

operating system. It is recommended to meet the following requirements in the operating system 

environment: 

Table 1 Operating system environment 

Operating system 

version 

Ubuntu16.04（x64）or later 

Windows 7 (x64) or later 

Mac OS X 10.13.5 (x64) or later 

Debian 9.8 (x64) or later 

Python version 3.5/3.6 

Python library 

dependencies 

'numpy >= 1.16.1' 

'scipy >= 1.1.0' 

'Pillow >= 3.1.2' 

'h5py >= 2.7.1' 

'lmdb >= 0.92' 

'networkx == 1.11' 

'flatbuffers == 1.9', 

'protobuf >= 3.5.2' 

'onnx == 1.4.1' 

'onnx-tf == 1.2.1' 

'flask >= 1.0.2' 

'tensorflow >= 1.11.0' 

'dill==0.2.8.2' 

'opencv-python>=3.4.3.18' 

'ruamel.yaml==0.15.82' 

'psutils>=5.6.2' 

Note: 

1. Windows and Mac OS only support Python 3.6 currently. 

2. This document mainly uses Ubuntu 16.04 / Python3.5 as an example. For other operating 

systems, please refer to the corresponding quick start guide: 

<Rockchip_Quick_Start_RKNN_Toolkit_V1.2.1_EN.pdf>. 
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3 User Guide 

3.1 Installation 

There are two ways to install RKNN-Toolkit: one is via pip install command, the other is running 

docker image with full RKNN-Toolkit environment. The specific steps of the two installation ways are 

described below. 

PS: The method of install RKNN-Toolkit on RK3399Pro Linux Develop Board is introduced on this 

link: 

http://t.rock-chips.com/wiki.php?mod=view&id=36 

3.1.1 Install by pip command 

1. Create virtualenv environment. If there are multiple versions of the Python environment in the 

system, it is recommended to use virtualenv to manage the Python environment. 

 

sudo apt install virtualenv 

sudo apt-get install libpython3.5-dev 

sudo apt install python3-tk 

 

virtualenv -p /usr/bin/python3 venv 

source venv/bin/activate 

 

2. Install dependent libraries: TensorFlow and opencv-python 

 

# Install tensorflow gpu 

pip install tensorflow-gpu 

# Install tensorflow cpu. Only one version of tensorflow can be installed. 

pip install tensorflow 

# Install opencv-python 

pip install opencv-python 

 

Note: RKNN-Toolkit itself does not rely on opencv-python, but the example will use this library 

to load image, so the library is also installed here. 

3. Install RKNN-Toolkit 

http://t.rock-chips.com/wiki.php?mod=view&id=36
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pip install package/rknn_toolkit-1.2.1-cp35-cp35m-linux_x86_64.whl 

 

Please select corresponding installation package (located at the package/ directory) according to 

different python versions and processor architectures: 

⚫ Python3.5 for x86_64：rknn_toolkit-1.2.1-cp35-cp35m-linux_x86_64.whl 

⚫ Python3.5 for arm_x64：rknn_toolkit-1.2.1-cp35-cp35m-linux_aarch64.whl 

⚫ Python3.6 for x86_64：rknn_toolkit-1.2.1-cp36-cp36m-linux_x86_64.whl 

⚫ Python3.6 for arm_x64: rknn_toolkit-1.2.1-cp36-cp36m-linux_aarch64.whl 

⚫ Python3.6 for Windows x86_64: rknn_toolkit-1.2.1-cp36-cp36m-win_amd64.whl 

⚫ Python3.6 for Mac OS X: rknn_toolkit-1.2.1-cp36-cp36m-macosx_10_9_x86_64.whl 

 

3.1.2 Install by the Docker Image 

In docker folder, there is a Docker image that has been packaged for all development requirements, 

Users only need to load the image and can directly use RKNN-toolkit, detailed steps are as follows: 

1. Install Docker 

 Please install Docker according to the official manual: 

 https://docs.docker.com/install/linux/docker-ce/ubuntu/  

2. Load Docker image 

 Execute the following command to load Docker image: 

 

docker load --input rknn-toolkit-1.2.1-docker.tar.gz 

 

After loading successfully, execute “docker images” command and the image of rknn-toolkit 

appears as follows: 

 

REPOSITORY     TAG     IMAGE ID        CREATED     SIZE 

rknn-toolkit      1.2.1    afa50891bb31    1 hours ago   2.18GB 

 

3. Run image 

https://docs.docker.com/install/linux/docker-ce/ubuntu/
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 Execute the following command to run the docker image. After running, it will enter the bash 

 environment. 

 

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb rknn-

toolkit:1.2.1 /bin/bash 

 

 If you want to map your own code, you can add the “-v <host src folder>:<image dst folder>” 

 parameter, for example: 

 

docker run -t -i --privileged -v /dev/bus/usb:/dev/bus/usb -v 

/home/rk/test:/test rknn-toolkit:1.2.1 /bin/bash 

 

4. Run demo 

 

cd /example/mobilenet_v1 

python test.py 

 

3.2 Usage of RKNN-Toolkit 

Depending on the type of model and device, RKNN-Toolkit can be used in the following three kinds 

of scenarios, the usage flow in each scenario is described in detail in the following sections. 

Note: for a detailed description of all the interfaces involved in the flow, refer to Section 3.4. 

3.2.1 Scenario 1: Inference for Simulation on PC 

In this scenario, RKNN-Toolkit is running on PC. Users perform simulation for RK1808 with the 

model provided by the users to complete inference or performance evaluation. 

Depending on the type of model, this scenario can be divided into two sub-scenarios: one scenario is 

that the model is a non-RKNN model, i.e. Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet model, 

and the other scenario is that the model is an RKNN model which is a proprietary model of Rockchip with 

the file suffix “rknn”. 

Note: This scenario only supported on x86_64 Linux. 
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3.2.1.1 Sub-scenario 1: run the non-RKNN model 

When running a non-RKNN model, the RKNN-Toolkit usage flow is shown below: 

Start

Create RKNN object to initialize RKNN 

SDK environment

Call config interface to set pre-processing 

parameters of model

Call load_caffe, load_tensorflow, 

load_tflite, load_onnx, load_darknet 

interface to load original Caffe, 

TensorFlow, TensorFlow Lite, ONNX or 

Darknet model

Call build interface to build RKNN model

Call export_rknn 

interface to export 

RKNN model

Call inference interface to 

perform inference with input 

to get results

Call eval_perf interface to 

evaluate performance of model to 

get the running time of each layer 

and total running time of model

Call init_runtime interface 

to initialize the runtime 

environment

End

Call release interface to release RKNN 

object

Call eval_memory interface 

to get memory useage when 

model running.

 

Figure 1 Usage flow of RKNN-Toolkit when running a non-RKNN model on PC 

 Note: 

 1. The above steps should be performed in order. 

 2.The model exporting step marked in the blue box is not necessary. If you exported, you can use 

load_rknn to load it later on. 

 3. The order of model inference, performance evaluation and memory evaluation steps marked in red 

box is not fixed, it depends on the actual demand. 

 4. Only when the target hardware platform is RK1808, TB-RK1808S0 AI Compute Stick, RK3399Pro 

or RK3399Pro Linux, we can call eval_memory interface. 
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3.2.1.2  Sub-scenario 2: run the RKNN model 

When running an RKNN model, users do not need to set model pre-processing parameters, nor do 

they need to build an RKNN model, the usage flow is shown in the following figure. 

Call load_rknn interface to load RKNN 

model

Call init_runtime interface to initialize the 

runtime environment

Start

Create RKNN object to initialize RKNN 

SDK environment

End

Call inference interface to 

perform inference with 

input to get results

Call eval_perf interface to evaluate 

performance of model to get the 

running time of each layer and total 

running time of model

Call release interface to release RKNN 

object

Call eval_memory interface 

to get the memory usage 

when model running.

 

Figure 2 Usage flow of RKNN-Toolkit when running an RKNN model on PC 

Note: 

 1. The above steps should be performed in order. 

 2. The order of model inference, performance evaluation and memory evaluation steps marked in red 

box is not fixed, it depends on the actual demand. 

 3. We can call eval_memory only when the target hardware platform is RK3399Pro, RK1808 or 

RK3399Pro Linux or TB-RK1808 AI Compute Stick. 
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3.2.2 Scenario 2: Inference on RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute 

Stick) connected with PC 

In this Scenario, PC is connected to the development board through USB interface, RKNN-Toolkit 

transfers the built or exported RKNN model to RK3399Pro (or RK1808 or TB-RK1808S0 AI Compute 

Stick) and performs the model inference to obtain result and performance information from RK3399Pro 

(or RK1808 or TB-RK1808S0 AI Compute Stick). 

If the model is a non-RKNN model (Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet), the usage 

flow and precautions of RKNN-Toolkit are the same as the sub-scenario 1 of the scenario 1(see Section 

3.2.1.1). 

If the model is an RKNN model (file suffix is “rknn”), the usage flow and precautions of RKNN-

Toolkit are the same as the sub-scenario 2 of the scenario 1(see Section 3.2.1.2). 

In addition, in this scenario, we also need to complete the following two steps: 

1. Make sure the USB OTG of development board is connected to PC, and call list_devices interface 

will show the device. More information about “list_devices” interface can see Scction 3.5.13. 

2. “Target” parameter and “device_id” parameter need to be specified when calling “init_runtime” 

interface to initialize the runtime environment, where “target” indicates the type of hardware, optional 

values are “rk1808” and “rk3399pro”. When multiple devices are connected to PC, “device_id” parameter 

needs to be specified. It is a string which can be obtained by calling “list_devices” interface, for example: 

 

all device(s) with adb mode: 

[] 

all device(s) with ntb mode: 

['TB-RK1808S0', '515e9b401c060c0b'] 

 

Runtime initialization code is as follows: 

 

# RK3399Pro 

ret = init_runtime(target='rk3399pro', device_id='VGEJY9PW7T') 

 

…… 

 

# RK1808 
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ret = init_runtime(target='rk1808', device_id='515e9b401c060c0b') 

 

# TB-RK1808S0 AI Compute Stick 

ret = init_runtime(target='rk1808', device_id='TB-RK1808S0') 

 

 Note: Currently, RK1808, TB-RK1808S0 AI Compute Stick support ADB or NTB. When we use 

multiple devices on PC or RK3399Pro Linux Development Board, all devices should use same mode, both 

are ADB or both are NTB. 

3.2.3 Scenario 3: Inference on RK3399Pro Linux development board 

In this scenario, RKNN-Toolkit is installed in RK3399Pro Linux system directly. The built or imported 

RKNN model runs directly on RK3399Pro to obtain the actual inference results or performance information 

of the model. 

For RK3399Pro Linux development board, the usage flow of RKNN-Toolkit depends on the type of 

model. If the model is a non-RKNN model, the usage flow is the same as that in the sub-scenario 1 of 

scenario 1(see Section 3.2.1.1), otherwise, please refer to the usage flow in the sub-scenario 2 of 

scenario1(see Section 3.2.1.2). 

3.3 Hybrid Quantization 

RKNN-Toolkit supports hybrid quantization from version 1.0.0. 

Before version 1.0.0, the quantization feature can minimize model accuracy based on improved model 

performance. But for some models, the accuracy has dropped a bit. In order to allow users to better balance 

performance and accuracy, we add new feature hybrid quantization from version 1.0.0. Users can decide 

which layers to quantize or not to quantize. Users can also modify the quantization parameters according 

to their own experience. 

Note: 

1. The example directory provides a hybrid quantization example named ssd_mobilenet_v2, which 

can be referenced to this example for hybrid quantification practice. 

2. Multiple inputs model can not do hybrid quantization currently. 
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3.3.1 Instructions of hybrid quantization 

Currently, we have three kind of ways to use hybrid quantization: 

1. Convert quantized layer to non-quantized layer. This way may improve accuracy, but 

performance will drop. 

2. Convert non-quantized layer to quantized layer. This way may improve performance, but 

accuracy may drop. 

3. Modify quantization parameters of pointed quantized layer. This way may improve accuracy or 

reduce accuracy, it has no effect on performance. 

PS: Only one method can be used at a time. 

3.3.2 Hybrid quantization profile 

When using the hybrid quantization feature, the first step is to generate a hybrid quantization profile, 

which is briefly described in this section. 

When we call the hybrid quantization interface hybrid_quantization_step1, a yaml configuration file 

of {model_name}.quantization.cfg is generated in the current directory. The configuration file format is as 

follows： 

 

%YAML 1.2 

--- 

# hybrid_quantization_action can be delete, add or modify, only one of 

these can be set at a hybrid quantization 

hybrid_quantization_action: delete 

'@attach_concat_1/out0_0:out0': 

    dtype: asymmetric_quantized 

    method: layer 

    max_value: 

    -   10.568130493164062 

    min_value: 

    -   -53.3099365234375 

    zero_point: 

    -   213 

    scale: 

    -   0.25050222873687744 

    qtype: u8 
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…… 

 

'@FeatureExtractor/MobilenetV2/Conv/Conv2D_230:bias': 

    dtype: None 

 

First line is the version of yaml. Second line is separator. Third line is comment. Followed by the main 

content of the configuration file. 

The first line of the body of the configuration file is the operation when using hybrid quantization. 

When using the hybrid quantization function, the user needs to indicate which way to use the hybrid 

quantization, that is, the three ways mentioned in the previous section. The corresponding actions are: 

"delete", "add", and "modify". The default value is "delete". 

Next is a list of model layers, each layer is a dictionary. The key of each dictionary is composed of 

@{layer_name}_{layer_id}:[weight/bias/out{port}], where layer_name is the name of this layer and 

layer_id is an identification of this layer. We usually quantize weight/bias/out when do quantization, and 

use multiple out0, out1, etc. for multiple outputs. The value of the dictionary is the quantization parameter. 

If the layer is not be quantized, there is only “dtype” item, and the value of “dtype” is None. 

3.3.3 Usage flow of hybrid quantization 

When using the hybrid quantization function, it can be done in four steps. 

Step1, load the original model and generate a quantize configuration file, a model structure file and a 

model weight bias file. The specific interface call process is as follows: 
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Start

Create RKNN object to initialize 
RKNN SDK environment

Call config interface to set pre-
processing parameters of model

Call load_caffe、load_tensorflow、
load_tflite、load_onnx or 

load_darknet et interface to load 
original Caffe、TensorFlow、

TensorFlow Lite、ONNX or Darknet 
model

Call hybrid_quantization_step1 
interface to generate quantization 
profile({model_name}.quantization.c

fg), model structure 
file({model_name}.json), model 

weight bias file({model_name}.data)

Call release interface to release 
RKNN object

End
 

Figure 3 call process of hybrid quantization step 1 

Step 2, Modify the quantization configuration file generated in the first step. 

⚫ If some quantization layer is changed to a non-quantization layer, find the layer that is not to be 

quantized, and delete the out item of its input node and the weight/bias item of this layer from 

the quantization configuration file. 

⚫ If some layers are changed from non-quantization to quantization, change the value of the 

hybrid_quantization_action item in the quantization configuration file to "add", then find the 

layer in the quantization configuration file and change its dtype from None to 

asymmetric_quantized or dynamic_fixed_point. Note: dtype needs to be consistent with other 

quantization layers 

⚫ If the quantization parameter is to be modified, the value of the hybrid_quantization_action item 

in the quantization configuration file is changed to "modify", and then the quantization parameter 
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of the specified layer can be directly modified. 

Step 3, generate hybrid quantized RKNN model. The specific interface call flow is as follows: 

Start

Create RKNN object to initialize 
RKNN SDK environment

Call config interface to set pre-
processing parameters of model

Call hybrid_quantization_step2 
interface to build hybrid quantized 

RKNN model

Call release interface to release 
RKNN object

End

Call export_rknn interface to 
export RKNN model

 

Figure 4 call process of hybrid quantization step 3 

Step 4, use the RKNN model generated in the previous step to inference. 

3.4 Model Segmentation 

RKNN-Toolkit supports model segmentation from version 1.2.0. This feature is used in a scenario 

where multiple models run simultaneously. A single model can be divided into multiple segments to be 

executed on the NPU, thereby adjusting the execution time of multiple models occupying the NPU, 

avoiding that one model occupies too much execution time, while other model was not implemented in 

time. 

The chance of each segment preempting the NPU is equal. After a segment execution is completed, it 

will take the initiative to give up the NPU, if the model has the next segment, it will be added to the end of 

the command queue again. At this time, if there are segments of other models waiting to be executed, 
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segmentation of other models will be performed in the order of the command queue. Note: The model that 

does not have model segmentation enabled is by default a segment.  

The ordinary RKNN model can be divided into multiple segments by calling the 

export_rknn_sync_model interface. For the detailed usage of this interface, please refer to section 3.7.13. 

If you are in a single model running scenario, you need to turn it off, just do not use a segmentation 

RKNN model. Because turning on model segmentation reduces the efficiency of single model execution, 

however, the multi-model running scene does not reduce the efficiency of model execution. Therefore, it 

is only recommended to use this feature in scenarios where multiple models are running at the same time. 

3.5 Example 

The following is the sample code for loading TensorFlow Lite model (see the example/mobilenet_v1 

directory for details), if it is executed on PC, the RKNN model will run on the simulator. 

 

import numpy as np 

import cv2 

from rknn.api import RKNN 

 

def show_outputs(outputs): 

    output = outputs[0][0] 

    output_sorted = sorted(output, reverse=True) 

    top5_str = 'mobilenet_v1\n-----TOP 5-----\n' 

    for i in range(5): 

        value = output_sorted[i] 

        index = np.where(output == value) 

        for j in range(len(index)): 

            if (i + j) >= 5: 

                break 

            if value > 0: 

                topi = '{}: {}\n'.format(index[j], value) 

            else: 

                topi = '-1: 0.0\n' 

            top5_str += topi 

    print(top5_str) 

 

def show_perfs(perfs): 

    perfs = 'perfs: {}\n'.format(outputs) 

    print(perfs) 

 

if __name__ == '__main__': 
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    # Create RKNN object 

    rknn = RKNN() 

     

    # pre-process config 

    print('--> config model') 

    rknn.config(channel_mean_value='103.94 116.78 123.68 58.82', 

reorder_channel='0 1 2') 

    print('done') 

 

    # Load tensorflow model 

    print('--> Loading model') 

    ret = rknn.load_tflite(model='./mobilenet_v1.tflite') 

    if ret != 0: 

        print('Load mobilenet_v1 failed!') 

        exit(ret) 

    print('done') 

 

    # Build model 

    print('--> Building model') 

    ret = rknn.build(do_quantization=True, dataset='./dataset.txt') 

    if ret != 0: 

        print('Build mobilenet_v1 failed!') 

        exit(ret) 

    print('done') 

 

    # Export rknn model 

    print('--> Export RKNN model') 

    ret = rknn.export_rknn('./mobilenet_v1.rknn') 

    if ret != 0: 

        print('Export mobilenet_v1.rknn failed!') 

        exit(ret) 

    print('done') 

 

    # Set inputs 

    img = cv2.imread('./dog_224x224.jpg') 

    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 

 

    # init runtime environment 

    print('--> Init runtime environment') 

    ret = rknn.init_runtime() 

    if ret != 0: 

        print('Init runtime environment failed') 

        exit(ret) 

    print('done') 

 

    # Inference 

    print('--> Running model') 

    outputs = rknn.inference(inputs=[img]) 

    show_outputs(outputs) 
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    print('done') 

 

    # perf 

    print('--> Begin evaluate model performance') 

    perf_results = rknn.eval_perf(inputs=[img]) 

    print('done') 

 

    rknn.release() 

 

 Where dataset.txt is a text file containing the path of the test image. For example, if we now have a 

picture of dog_224x224.jpg in the example/mobilenet_v1 directory, then the corresponding content in 

dataset.txt is as follows: 

dog_224x224.jpg 

 When performing model inference, the result of this demo is as follows: 

 

-----TOP 5----- 

[156]: 0.8837890625 

[155]: 0.0677490234375 

[188 205]: 0.00867462158203125 

[188 205]: 0.00867462158203125 

[263]: 0.0057525634765625 

 

 

When evaluating model performance, the result of this demo is as follows (since it is executed on 

PC, the result is for reference only). 

 

============================================== 

                               Performance                               

============================================== 

Layer ID    Name                                         Time(us) 

0           tensor.transpose_3                           72 

44          convolution.relu.pooling.layer2_2            363 

59          convolution.relu.pooling.layer2_2            201 

45          convolution.relu.pooling.layer2_2            185 

60          convolution.relu.pooling.layer2_2            243 

46          convolution.relu.pooling.layer2_2            98 

61          convolution.relu.pooling.layer2_2            149 

47          convolution.relu.pooling.layer2_2            152 

62          convolution.relu.pooling.layer2_2            120 

48          convolution.relu.pooling.layer2_2            116 

63          convolution.relu.pooling.layer2_2            101 

49          convolution.relu.pooling.layer2_2            185 

64          convolution.relu.pooling.layer2_2            101 

50          convolution.relu.pooling.layer2_2            111 

65          convolution.relu.pooling.layer2_2            109 
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51          convolution.relu.pooling.layer2_2            213 

66          convolution.relu.pooling.layer2_2            109 

52          convolution.relu.pooling.layer2_2            213 

67          convolution.relu.pooling.layer2_2            109 

53          convolution.relu.pooling.layer2_2            213 

68          convolution.relu.pooling.layer2_2            109 

54          convolution.relu.pooling.layer2_2            213 

69          convolution.relu.pooling.layer2_2            109 

55          convolution.relu.pooling.layer2_2            213 

70          convolution.relu.pooling.layer2_2            109 

56          convolution.relu.pooling.layer2_2            174 

71          convolution.relu.pooling.layer2_2            219 

57          convolution.relu.pooling.layer2_2            353 

58          fullyconnected.relu.layer_3                   110 

Total Time(us): 4772 

FPS(800MHz): 209.56 

============================================== 

 

3.6 RKNN-Toolkit API description 

3.6.1 RKNN object initialization and release 

The initialization/release function group consists of API interfaces to initialize and release the 

RKNN object as needed. The RKNN() must be called before using all the API interfaces of RKNN-

Toolkit, and call the release() method to release the object when task finished. 

When we init RKNN object, we can set verbose and verbose_file parameters, used to show detailed 

log information of model loading, building and so on. The data type of verbose parameter is bool. If we 

set the value of this parameter to True, the RKNN Toolkit will show detailed log information on screen. 

The data type of verbose_file is string. If we set the value of this parameter to a file path, the detailed log 

information will be written to this file (the verbose also need be set to True).  

The sample code is as follows: 

 

# Show the detailed log information on screen, and saved to 

# mobilenet_build.log 

rknn = RKNN(verbose=True, verbose_file='./mobilenet_build.log') 

# Only show the detailed log information on screen. 

rknn = RKNN(verbose=True) 

… 

rknn.release() 
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3.6.2 Loading non-RKNN model 

 RKNN-Toolkit currently supports Caffe, TensorFlow, TensorFlow Lite, ONNX, Darknet five kinds of 

non-RKNN models. There are different calling interfaces when loading models, the loading interface of 

these five models is described in detail below. 

3.6.2.1 Loading Caffe model 

API load_caffe 

Description Load Caffe model 

Parameter model: The path of Caffe model structure file (suffixed with “.prototxt” ). 

proto: Caffe model format (valid value is ‘caffe’ or ‘lstm_caffe’). We use ‘lstm_caffe’ when 

the model is RNN model. 

blobs: The path of Caffe model binary data file (suffixed with “.caffemodel”). 

Return 

Value 

0: Import successfully 

-1: Import failed 

The sample code is as follows: 

 

# Load the mobilenet_v2 Caffe model in the current path 

ret = rknn.load_caffe(model='./mobilenet_v2.prototxt', 

       proto='caffe', 

       blobs='./mobilenet_v2.caffemodel') 

 

3.6.2.2  Loading TensorFlow model 

API load_tensorflow 

Description Load TensorFlow model 

Parameter tf_pb: The path of TensorFlow model file (suffixed with “.pb”). 

inputs: The input node of model, input with multiple nodes is supported now. All the input 

node string are placed in a list. 
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input_size_list: The size and number of channels of the image corresponding to the input 

node. As in the example of mobilenet_v1 model, the input_size_list parameter should be 

set to [224,224,3]. 

outputs: The output node of model, output with multiple nodes is supported now. All the 

output nodes are placed in a list. 

predef_file: In order to support some controlling logic, a predefined file in npz format needs 

to be provided. This predefined fie can be generated by the following function call:  

np.savez(‘prd.npz’, [placeholder name]=prd_value)。If there are / in placeholder name, use 

# to replace. 

mean_values: The mean values of the input. This parameter needs to be set only if the 

imported model is a quantized model, and three channels of input of model have the same 

mean value.  

std_values: The scale value of the input. This parameter needs to be set only if the imported 

model is a quantized model. 

Return 

value 

0: Import successfully 

-1: Import failed 

 The sample code is as follows: 

 

# Load ssd_mobilenet_v1_coco_2017_11_17 TF model in the current path 

ret = rknn.load_tensorflow( 

      tf_pb='./ssd_mobilenet_v1_coco_2017_11_17.pb',              

      inputs=['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0 

          /BatchNorm/batchnorm/mul_1'],  

      outputs=['concat', 'concat_1'],  

      input_size_list=[[300, 300, 3]]) 

 

3.6.2.3  Loading TensorFlow Lite model 

API load_tflite 

Description Load TensorFlow Lite model. 
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Note: 

RKNN-Toolkit uses the tflite schema commits as in link: 

https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/sche

ma.fbs 

commit hash: 

0c4f5dfea4ceb3d7c0b46fc04828420a344f7598 

Because the tflite schema may not compatible with each other, tflite models in older or 

newer schema may not be imported successfully. 

Parameter model: The path of TensorFlow Lite model file (suffixed with “.tflite”). 

Return 

Value 

0: Import successfully 

-1: Import failed 

 The sample code is as follows: 

 

# Load the mobilenet_v1 TF-Lite model in the current path  

ret = rknn.load_tflite(model = './mobilenet_v1.tflite')  

 

3.6.2.4  Loading ONNX model 

API load_onnx 

Description Load ONNX model 

Parameter model: The path of ONNX model file (suffixed with “.onnx”) 

Return 

Value 

0: Import successfully 

-1: Import failed 

The sample code is as follows: 

 

# Load the arcface onnx model in the current path 

ret = rknn.load_onnx(model = './arcface.onnx')  

 

https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
https://github.com/tensorflow/tensorflow/commits/master/tensorflow/lite/schema/schema.fbs
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3.6.2.5  Loading Darknet model 

API load_darknet 

Description Load Darknet model 

Parameter model: The path of Darknet model structure file (suffixed with “.cfg”). 

weight: The path of weight file (suffixed with “.weight”). 

Return 

Value 

0: Import successfully 

-1: Import failed 

 The sample code is as follows: 

 

# Load the yolov3-tiny darknet model in the current path 

ret = rknn.load_darknet(model = './yolov3-tiny.cfg',  

                         weight= './yolov3.weights') 

 

3.6.3 RKNN model configuration 

 Before the RKNN model is built, the model needs to be configured first through the config interface. 

API config 

Description Set model parameters 

Parameter batch_size: The size of each batch of data sets. The default value is 100. When quantifying, 

the amount of data fed in each batch will be determined according to this parameter to 

correct the quantization results. 

channel_mean_value: It is a list contains four value (M0, M1, M2, S0), where the first three 

value are all mean parameters, the latter value is a scale parameter. If the input data is 

three-channel data with (Cin0, Cin1, Cin2), after preprocessing, the shape of output data is 

(Cout0, Count1, Count2), calculated as follows: 

Cout0 = (Cin0 - M0)/S0 

Cout1 = (Cin1 - M1)/S0 

Cout2 = (Cin2 - M2)/S0 

Note: for three-channel input only, other channel formats can be ignored.  
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For example, if input data needs to be normalized to [-1,1], this parameter should be set to 

(128 128 128 128). If input data needs to be normalized to [-1,1], this parameter should be 

set to (0 0 0 255). If there are multiple inputs, the corresponding parameters for each input 

is split with ‘#’, such as ’128 128 128 128#128 128 128 128’. 

epochs: Number of iterations in quantization. Quantization parameter calibration is 

performed with specified data at each iteration. Default value is -1, in this situation, the 

number of iteration is automatically calculated based on the amount of data in the dataset.  

reorder_channel: A permutation of the dimensions of input image (for three-channel input 

only, other channel formats can be ignored). The new tensor dimension i will correspond 

to the original input dimension reorder_channel[i]. For example, if the original image is 

RGB format, ‘2 1 0’ indicates that it will be converted to BGR. 

If there are multiple inputs, the corresponding parameters for each input is split with ‘#’, 

such as ’0 1 2#0 1 2’. 

Note: each value of reorder_channel must not be set to the same value.  

need_horizontal_merge: Indicates whether to merge horizontal, the default value is False. 

If the model is inception v1/v3/v4, it is recommended to enable this option, it can improve 

the performance of inference.  

quantized_dtype: Quantization type, the quantization types currently supported are 

asymmetric_quantized-u8,dynamic_fixed_point-8,dynamic_fixed_point-16. The default 

value is asymmetric_quantized-u8. 

Return 

Value 

None 

 The sample code is as follows: 

 

# model config 

rknn.config(channel_mean_value='103.94 116.78 123.68 58.82', 

reorder_channel='0 1 2', 

need_horizontal_merge=True) 
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3.6.4 Building RKNN model 

API build 

Description Build corresponding RKNN model according to imported model (Caffe, TensorFlow, 

TensorFlow Lite, etc.). 

Parameter do_quantization: Whether to quantize the model, optional values are True and False. 

dataset: A input data set for rectifying quantization parameters. Currently supports text file 

format, the user can place the path of picture( jpg or png ) or npy file which is used for 

rectification. A file path for each line. Such as: 

a.jpg 

b.jpg 

or 

a.npy 

b.npy 

If there are multiple inputs, the corresponding files are divided by space. Such as: 

a.jpg a2.jpg 

b.jpg b2.jpg 

or 

a.npy a2.npy 

b.npy b2.npy 

 

pre_compile: If this option is set to True, it may reduce the size of the model file, increase 

the speed of the first startup of the model on the device. However, if this option is enabled, 

the built model can be only run on the hardware platform, and the inference or 

performance evaluation cannot be performed on simulator. If the hardware is updated, the 

corresponding model need to be rebuilt.  

Note:  
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1. we can not use pre compile on RK3399Pro Linux development board or Windows PC 

or Mac OS X PC. 

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later can not run on device 

installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated 

by old RKNN-Toolkit (version < 1.0.0) can not run on device installed new NPU driver 

(NPU drvier version >= 0.9.6). We can call get_sdk_version interface to fetch driver 

version. 

3. If there are multiple inputs, this option needs to be set to False. 

rknn_batch_size：batch size of input, default is 1. If greater than 1, NPU can inference 

multiple frames of input image or input data in one inference. For example, original input 

of MobileNet is [1, 224, 224, 3], output shape is [1, 1001]. When rknn_batch_size is set to 

4, the input shape of MobileNet becomes [4, 224, 224, 3], output shape becomes [4, 1001].  

Note： 

1. The adjustment of rknn_batch_size does not improve the performance of the general 

model on the NPU, but it will significantly increase memory consumption and 

increase the delay of single frame. 

2. The adjustment of rknn_batch_size can reduce the consumption of the ultra-small 

model on the CPU and improve the average frame rate of the ultra-small model. 

(Applicable to the model is too small, CPU overhead is greater than the NPU 

overhead) 

3. The value of rknn_batch_size is recommended to be less than 32, to avoid the 

memory usage is too large and the reasoning fails. 

4. After the rknn_batch_size is modified, the shape of input and output will be 

modified. So the inputs of inference should be set to correct size. We also need to 

process the returned outputs on post processing. 
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Return 

value 

0: Build successfully 

-1: Build failed 

 The sample code is as follows: 

 

# Build and quantize RKNN model  

ret = rknn.build(do_quantization=True, dataset='./dataset.txt')  

 

3.6.5 Export RKNN model 

 In order to make the RKNN model reusable, an interface to produce a persistent model is provided. 

After building RKNN model, export_rknn() is used to save an RKNN model to a file. If you have an 

RKNN model now, it is not necessary to call export_rknn() interface again. 

API export_rknn 

Description Save RKNN model in the specified file (suffixed with “.rknn”). 

Parameter export_path: The path of generated RKNN model file. 

Return 

Value 

0: Export successfully 

-1: Export failed 

The sample code is as follows: 

 

# save the built RKNN model as a mobilenet_v1.rknn file in the current 

 # path 

ret = rknn.export_rknn(export_path = './mobilenet_v1.rknn')  

 

3.6.6 Loading RKNN model 

API load_rknn 

Description Load RKNN model 

Parameter path: The path of RKNN model file. 

load_model_in_npu: Whether to load RKNN model in NPU directly. The path parameter 

should fill in the path of the model in NPU. It can be set to True only when RKNN-Toolkit 
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run on RK3399Pro Linux or NPU device(RK3399Pro, RK1808 or TB-RK1808 AI Compute 

Stick) is connected. Default value is False. 

Return 

Value 

0: Load successfully 

-1: Load failed 

The sample code is as follows: 

 

# Load the mobilenet_v1 RKNN model in the current path 

ret = rknn.load_rknn(path='./mobilenet_v1.rknn')  

 

3.6.7 Initialize the runtime environment 

Before inference or performance evaluation, the runtime environment must be initialized. This 

interface determines which type of runtime hardware is specified to run model. 

API init_runtime 

Description Initialize the runtime environment. Set the device information (hardware platform, device 

ID). Determine whether to enable debug mode to obtain more detailed performance 

information for performance evaluation. 

Parameter target: Target hardware platform, now supports “rk3399pro”, “rk1808”. The default value 

is “None”, which indicates model runs on default hardware platform and system. 

Specifically, if RKNN-Toolkit is used in PC, the default device is simulator, and if RKNN-Toolkit 

is used in RK3399Pro Linux development board, the default device is RK3399Pro. The 

“rk1808” includes TB-RK1808 AI Compute Stick. 

device_id: Device identity number, if multiple devices are connected to PC, this parameter 

needs to be specified which can be obtained by calling “list_devices” interface. The default 

value is “None “.  

Note: Mac OS X platform does not supple multiple devices. 

perf_debug: Debug mode option for performance evaluation. In debug mode, the running 

time of each layer can be obtained, otherwise, only the total running time of model can be 
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given. The default value is False. 

eval_mem: Whether enter memory evaluation mode. If set True, we can call eval_memory 

interface later to fetch memory usage of model running. The default value is False. 

async_mode: Whether to use asynchronous mode. When calling the inference interface, it 

involves setting the input picture, model running, and fetching the inference result. If the 

asynchronous mode is enabled, setting the input of the current frame will be performed 

simultaneously with the inference of the previous frame, so in addition to the first frame, 

each subsequent frame can hide the setting input time, thereby improving performance. 

In asynchronous mode, the inference result returned each time is the previous frame. The 

default value for this parameter is False. 

Return 

Value 

0: Initialize the runtime environment successfully 

-1: Initialize the runtime environment failed 

The sample code is as follows: 

 

# Initialize the runtime environment 

ret = rknn.init_runtime(target='rk1808', device_id='012345789AB') 

if ret != 0: 

    print('Init runtime environment failed') 

    exit(ret) 

 

3.6.8 Inference with RKNN model 

 This interface kicks off the RKNN model inference and get the result of inference. 

API inference 

Description Use the model to perform inference with specified input and get the inference result. 

Detailed scenarios are as follows: 

1. If RKNN-Toolkit is running on PC and the target is set to " rk3399pro " or " rk1808 " when 

initializing the runtime environment, the inference of model is performed on the specified 

hardware platform. The “rk1808” includes TB-RK1808 AI Compute Stick. 
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2. If RKNN-Toolkit is running on PC and the target is not set when initializing the runtime 

environment, the inference of model is performed on the simulator. 

3. If RKNN-Toolkit is running on RK3399Pro Linux development board, the inference of 

model is performed on the actual hardware. 

Parameter inputs: Inputs to be inferred, such as images processed by cv2. The object type is ndarray 

list. 

data_type: The numerical type of input data. Optional values are ’float32’, ‘float16’, ‘int8’, 

‘uint8’, ‘ing16’. The default value is ’uint8’. 

data_format: The shape format of input data. Optional values are “nchw”, “nhwc”. The 

default value is ‘nhwc’.  

outputs: The object to store final output data, the object type is ndarray list. The shape and 

dtype of outputs are consistent with the return value of this interface. The default value is 

None, which indicates the dtype of return value is float32.  

inputs_pass_through: Pass the input transparently to the NPU driver. In non-transparent 

mode, the tool will reduce the mean, divide the variance, etc. before the input is passed to 

the NPU driver; in transparent mode, these operations will not be performed. The value of 

this parameter is an array. For example, to pass input0 and not input1, the value of this 

parameter is [1, 0]. The default value is None, which means that all input is not transparent. 

Return 

Value 

results: The result of inference, the object type is ndarray list。 

Note: Versions prior to 1.0.0 will convert output shape from "NHWC" to "NCHW". 

Starting from version 1.1.0, the shape of the output will be consistent with the original 

model, and no longer convert from "NHWC" to "NCHW". Please pay attention to the 

location of the channel when performing post processing. 

The sample code is as follows: 

For classification model, such as mobilenet_v1, the code is as follows (refer to example/mobilenet_v1 

for the complete code): 
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# Preform inference for a picture with a model and get a top-5 result 

…… 

outputs = rknn.inference(inputs=[img]) 

show_outputs(outputs) 

…… 

 

The result of top-5 is as follows: 

 

-----TOP 5----- 

[156]: 0.8837890625 

[155]: 0.0677490234375 

[188 205]: 0.00867462158203125 

[188 205]: 0.00867462158203125 

[263]: 0.0057525634765625 

 

For object detection model, such as mobilenet-ssd, the code is as follows (refer to example/ mobilent-

ssd for the complete code): 

 

# Perform inference for a picture with a model and get the result of object 

  

# detection 

…… 

outputs = rknn.inference(inputs=[image]) 

…… 

 

After the inference result is post-processed, the final output is shown in the following picture (the 

color of the object border is randomly generated, so the border color obtained will be different each time): 
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Figure 3 mobilenet-ssd inference result 

3.6.9 Evaluate model performance 

API eval_perf 

Description Evaluate model performance. 

Detailed scenarios are as follows: 

1. If running on PC and not setting the target when initializing the runtime environment, 

the performance information is obtained from simulator, which contains the running time 

of each layer and the total running time of model. 

2. If running on RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick which connected to 

PC and setting perf_debug to False when initializing runtime environment, the 

performance information is obtained from RK3399Pro or RK1808, which only contains the 

total running time of model. And if the perf_debug is set to True, the running time of each 
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layer will also be captured in detail. 

3. If running on RK3399Pro Linux development board and setting perf_debug to False when 

initializing runtime environment, the performance information is obtained from 

RK3399Pro, which only contains the total running time of model. And if the perf_debug is 

set to True, the running time of each layer will also be captured in detail. 

Parameter inputs: Input data, such as images processed by cv2. The object type is ndarray list. 

data_type: The numerical type of input data. Optional values are ’float32’, ‘float16’, ‘int8’, 

‘uint8’, ‘ing16’. The default value is ’uint8’. 

data_format: The shape format of input data. Optional values are “nchw”, “nhwc”. The 

default value is ‘nhwc’.  

is_print: Whether to print performance evaluation results in the canonical format. The 

default value is True. 

Return 

Value 

perf_result: Performance information. The object type is dictionary.  

If running on device (RK3399Pro or RK1808) and set perf_debug to False when initializing 

the runtime environment, the dictionary gives only one field ‘total_time’, example is as 

follows: 

{ 

‘total_time’: 1000 

} 

In other scenarios, the obtained dictionary has one more filed called ‘layers’ which is also 

a dictionary type. The ‘layers’ takes the ID of each layer as the key, and its value is one 

dictionary which contains 'name' (name of layer), 'operation' (operator, which is only 

available when running on the hardware platform), 'time'(time-consuming of this layer). 

Example is as follows: 

{ 

'total_time', 4568,  

'layers', { 

              '0': { 

                  'name': 'convolution.relu.pooling.layer2_2', 

                  'operation': 'CONVOLUTION', 

                  'time', 362 
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              } 

              '1': { 

                  'name': 'convolution.relu.pooling.layer2_2', 

                  'operation': 'CONVOLUTION', 

                  'time', 158 

              } 

          } 

} 

 

 The sample code is as follows: 

 

# Evaluate model performance 

…… 

rknn.eval_perf(inputs=[image], is_print=True) 

…… 

 

 For mobilenet-ssd in example directory, the performance evaluation results are printed as 

follows(The following is the result obtained on the PC simulator. The details obtained when connecting the 

hardware device are slightly different from the result.): 

============================================== 

                               Performance                               

============================================== 

Layer ID    Name                                         Time(us) 

0           tensor.transpose_3                           125 

71          convolution.relu.pooling.layer2_3             325 

105         convolution.relu.pooling.layer2_2             331 

72          convolution.relu.pooling.layer2_2             437 

106         convolution.relu.pooling.layer2_2             436 

73          convolution.relu.pooling.layer2_2             223 

107         convolution.relu.pooling.layer2_2             374 

74          convolution.relu.pooling.layer2_2             327 

108         convolution.relu.pooling.layer2_3             533 

75          convolution.relu.pooling.layer2_2             201 

109         convolution.relu.pooling.layer2_2             250 

76          convolution.relu.pooling.layer2_2             320 

110         convolution.relu.pooling.layer2_2             250 

77          convolution.relu.pooling.layer2_2             165 

111         convolution.relu.pooling.layer2_2             257 

78          convolution.relu.pooling.layer2_2             319 

112         convolution.relu.pooling.layer2_2             257 

79          convolution.relu.pooling.layer2_2             319 

113         convolution.relu.pooling.layer2_2             257 

80          convolution.relu.pooling.layer2_2             319 

114         convolution.relu.pooling.layer2_2             257 

81          convolution.relu.pooling.layer2_2             319 
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115         convolution.relu.pooling.layer2_2             257 

82          convolution.relu.pooling.layer2_2             319 

83          convolution.relu.pooling.layer2_2             181 

27          tensor.transpose_3                           48 

84          convolution.relu.pooling.layer2_2             45 

28          tensor.transpose_3                           6 

116         convolution.relu.pooling.layer2_3             297 

85          convolution.relu.pooling.layer2_2             233 

117         convolution.relu.pooling.layer2_2             311 

86          convolution.relu.pooling.layer2_2             479 

87          convolution.relu.pooling.layer2_2             249 

35          tensor.transpose_3                           29 

88          convolution.relu.pooling.layer2_2             30 

36          tensor.transpose_3                           5 

89          convolution.relu.pooling.layer2_2             125 

90          convolution.relu.pooling.layer2_3             588 

91          convolution.relu.pooling.layer2_2             96 

41          tensor.transpose_3                           10 

92          convolution.relu.pooling.layer2_2             11 

42          tensor.transpose_3                           5 

93          convolution.relu.pooling.layer2_2             31 

94          convolution.relu.pooling.layer2_3             154 

95          convolution.relu.pooling.layer2_2             50 

47          tensor.transpose_3                           6 

96          convD_2                                      6 

48          tensor.transpose_3                           4 

97          convolution.relu.pooling.layer2_2             17 

98          convolution.relu.pooling.layer2_3             153 

99          convolution.relu.pooling.layer2_2             49 

53          tensor.transpose_3                            5 

100         convolution.relu.pooling.layer2_2             6 

54          tensor.transpose_3                           4 

101         convolution.relu.pooling.layer2_2             10 

102         convolution.relu.pooling.layer2_2             21 

103         fullyconnected.relu.layer_3                   13 

104         fullyconnected.relu.layer_3                   8 

Total Time(us): 10462 

FPS(800MHz): 95.58 

============================================== 

 

3.6.10 Evaluating memory usage 

API eval_memory 

Description Fetch memory usage when model is running on hardware platform. 

Model must run on RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or RK3399Pro Linux. 
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Note: When we use this API, the driver version must on 0.9.4 or later. We can get driver 

version via get_sdk_version interface. 

Parameter is_print: Whether to print performance evaluation results in the canonical format. The 

default value is True. 

Return 

Value 

memory_detail：Detail information of memory usage. Data format is dictionary. 

Data shows as below： 

{ 

'system_memory', { 

    'maximum_allocation': 128000000, 

    'total_allocation': 152000000 

}, 

'npu_memory', { 

    'maximum_allocation': 30000000, 

    'total_allocation': 40000000 

}, 

'total_memory', { 

    'maximum_allocation': 158000000, 

    'total_allocation': 192000000 

} 

} 

⚫ The ‘system_memory’ means memory usage of system. 

⚫ The ‘npu_memory’ means memory usage inside the NPU. 

⚫ The ‘total_memory’ means the sum of system and npu`s memory usage. 

⚫ The ‘maximum_allocation’ filed means the maximum memory usage(unit: Byte) from 

start the model to dump the information. It is the peak memory usage. 

⚫ The ‘total_allocation’ means the accumulation memory usage(unit: Byte) of allocate 

memory from start the model to dump the information. 

The sample code is as follows: 

 

# eval memory usage 

…… 

memory_detail = rknn.eval_memory() 

…… 

 

 For mobilenet_v1 in example directory, the memory usage when model running on RK1808 is printed 

as follows: 



 

 37 

 

============================================== 

            Memory Profile Info Dump                   

============================================== 

System memory: 

    maximum allocation : 41.53 MiB 

    total allocation   : 43.86 MiB 

NPU memory: 

    maximum allocation : 34.53 MiB 

    total allocation   : 34.54 MiB 

 

Total memory: 

    maximum allocation : 76.06 MiB 

    total allocation   : 78.40 MiB 

 

INFO: When evaluating memory usage, we need consider   

the size of model, current model size is: 4.10 MiB        

============================================== 

 

3.6.11 Get SDK version 

API get_sdk_version 

Description Get API version and driver version of referenced SDK. 

Note: Before we use this interface, we must load model and initialize runtime first. And this 

API can only used on RK3399Pro、RK1808 or TB-RK1808 AI Compute Stick. 

Parameter None 

Return 

Value 

sdk_version：API and driver version. Data type is string. 

The sample code is as follows： 

 

# Get SDK version 

…… 

sdk_version = rknn.get_sdk_version() 

…… 

 

 The SDK version looks like below： 

 

============================================== 

RKNN VERSION: 

  API: 1.2.0 (1190a71 build: 2019-09-25 12:39:14) 
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  DRV: 1.2.0 (6897f97 build: 2019-09-25 10:17:41) 

============================================== 

 

 

3.6.12 Hybrid Quantization 

3.6.12.1 hybrid_quantization_step1 

When using the hybrid quantization function, the main interface called in the first phase is 

hybrid_quantization_step1, which is used to generate the model structure file ({model_name}.json), the 

weight file ({model_name}.data), and the quantization configuration file ({model_name}.quantization. 

Cfg). Interface details are as follows： 

API hybrid_quantization_step1 

Description Corresponding model structure files, weight files, and quantization profiles are generated 

according to the loaded original model. 

Parameter dataset: A input data set for rectifying quantization parameters. Currently supports text file 

format, the user can place the path of picture( jpg or png ) or npy file which is used for 

rectification. A file path for each line. Such as: 

a.jpg 

b.jpg 

or 

a.npy 

b.npy 

Return 

Value 

0: success 

-1: failure 

The sample code is as follows： 

 

# Call hybrid_quantization_step1 to generate quantization config 

…… 

ret = rknn.hybrid_quantization_step1(dataset='./dataset.txt') 
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…… 

 

3.6.12.2 hybrid_quantization_step2 

When using the hybrid quantization function, the primary interface for generating a hybrid quantized 

RKNN model phase call is hybrid_quantization_step2. The interface details are as follows: 

API hybrid_quantization_step2 

Description The model structure file, the weight file, the quantization profile, and the correction data 

set are received as inputs, and the hybrid quantized RKNN model is generated. 

Parameter model_input: The model structure file generated in the first step, which is shaped like 

"{model_name}.json". The data type is a string. Required parameter. 

data_input: The model weight file generated in the first step, which is shaped like 

"{model_name}.data". The data type is a string. Required parameter.  

model_quantization_cfg: The modified model quantization profile, whick is shaped like 

"{model_name}.quantization.cfg". The data type is a string. Required parameter. 

dataset: A input data set for rectifying quantization parameters. Currently supports text file 

format, the user can place the path of picture( jpg or png ) or npy file which is used for 

rectification. A file path for each line. Such as: 

a.jpg 

b.jpg 

or 

a.npy 

b.npy 

pre_compile: If this option is set to True, it may reduce the size of the model file, increase 

the speed of the first startup of the model on the device. However, if this option is enabled, 

the built model can be only run on the hardware platform, and the inference or 

performance evaluation cannot be performed on simulator. If the hardware is updated, the 
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corresponding model need to be rebuilt.  

Note:  

1. we can not use pre compile on RK3399Pro Linux development board or Windows PC 

or Mac OS X PC. 

2. Pre-compiled model generated by RKNN-Toolkit-v1.0.0 or later can not run on device 

installed old driver (NPU driver version < 0.9.6), and pre-compiled model generated 

by old RKNN-Toolkit (version < 1.0.0) can not run on device installed new NPU driver 

(NPU drvier version >= 0.9.6). We can call get_sdk_version interface to fetch driver 

version. 

3. If there are multiple inputs, this option needs to be set to False. 

Return 

Value 

0: success 

-1: failure 

The sample code is as follows： 

 

# Call hybrid_quantization_step2 to generate hybrid quantized RKNN model 

…… 

ret = rknn.hybrid_quantization_step2( 

model_input='./ssd_mobilenet_v2.json', 

data_input='./ssd_mobilenet_v2.data', 

model_quantization_cfg='./ssd_mobilenet_v2.quantization.cfg', 

dataset='./dataset.txt') 

…… 

 

3.6.13 Export a segmentation model 

The function of this interface is to convert the ordinary RKNN model into a segment model, and the 

position of the segment is specified by the user. 

API export_rknn_sync_model 

Description Insert a sync layer after the user-specified layer to segment the model and export the 

segmented model. 

Parameter input_model: the model which need segment. Data type is string, required. 
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sync_uids: uids of the layer which need insert sync layer. RKNN-Toolkit will insert a sync 

layer. 

Note: 

1. Uid can be obtained through the eval_perf interface, and perf_debug should be set to 

True when call init_runtime interface. When we want to obtain uids, we need connect 

a RK3399Pro or RK1808 or TB-RK1808 AI Compute Stick, we can also obtain uids on 

RK3399Pro Linux develop board.  

2. The value of sync_uids cannot be filled in at will. It must be obtained by eval_perf 

interface, Otherwise unpredictable consequences may occur. 

output_model:  

Return 

Value 

0: success 

-1: failure 

The sample code is as follows： 

 

from rknn.api import RKNN 

 

if __name__ == '__main__': 

    rknn = RKNN() 

    ret = rknn.export_rknn_sync_model( 

input_model='./ssd_inception_v2.rknn', 

              sync_uids=[206, 186, 152, 101, 96, 67, 18, 17], 

              output_model='./ssd_inception_v2_sync.rknn') 

    if ret != 0: 

        print('export sync model failed.') 

        exit(ret) 

    rknn.release() 

 

 

3.6.14 List Devices 

API list_devices  

Description List connected RK3399PRO/RK1808/TB-RK1808S0 AI Compute Stick。 

Parameter None 
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Return 

Value 

Return adb_devices list and ntb_devices list. If there are no devices connected to PC, it will 

return two empty list. 

For example, there are two TB-RK1808 AI Compute Sticks connected to PC, it`s return looks 

like below: 

adb_devices = [] 

ntb_devices = ['TB-RK1808S0', '515e9b401c060c0b'] 

The sample code is as follows： 

 

from rknn.api import RKNN 

 

if __name__ == '__main__': 

    rknn = RKNN() 

    rknn.list_devices() 

    rknn.release() 

  

The devices list looks like below： 

 

************************* 

all device(s) with adb mode: 

['515e9b401c060c0b', 'XGOR2N4EZR'] 

************************* 

 

3.6.15 Register Custom OP 

API register_op 

Description Register custom op。 

Parameter op_path: rknnop file path of custom op build output 

Return 

Value 

Void 

The sample code is as follows. Note that this interface need be called before model converted. Please 

refer to the "Rockchip_Developer_Guide_RKNN_Toolkit_Custom_OP_CN" document for the use and 

development of custom operators. 

 

rknn.register_op('./resize_area/ResizeArea.rknnop') 
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rknn.load_tensorflow(…) 
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