
 http://www.rock-chips.com/

Security Class: Top-Secret () Secret () Internal () Public (√)

RKNN-Toolkit Quick Start

 (Technology Department, Graphic Display Platform Center)

Mark:

[] Editing

[√] Released

Version V1.3.0

Author Rao Hong

Completed

Date

2019-12-23

Auditor Randall

Reviewed Date 2019-12-23

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd

(All rights reserved)

 2

Revision History

Version no. Author Revision Date Revision description Auditor

V0.9.9 Rao Hong 2019-03-25 Initial version release Randall

V1.0.0 Rao Hong 2019-05-08
Synchronize the modification contents of

RKNN-Toolkit-V1.0.0
Randall

V1.1.0 Rao Hong 2019-06-28

1. Synchronize the modification contents

of RKNN-Toolkit-V1.1.0

2. Rename document, from

<RKNN-Toolkit Quick Setup Guide> to

<RKNN-Toolkit Quick Start>

3. Add quick start for Windows/Mac OS

X/ARM64 platform.

Randall

V1.2.0 Rao Hong 2019-08-21
Synchronize the modification contents of

RKNN-Toolkit-V1.2.0
Randall

V1.2.1 Rao Hong 2019-09-26
Synchronize the modification contents of

RKNN-Toolkit-V1.2.1
Randall

V1.3.0 Rao Hong 2019-12-23
Synchronize the modification contents of

RKNN-Toolkit-V1.3.0
Randall

 3

 Content

1 MAIN FEATURES INTRODUCTION ... 1

2 SYSTEM DEPENDENCY INTRODUCTION ... 4

3 UBUNTU PLATFORM QUICK START GUIDE .. 5

3.1 ENVIRONMENT PREPARATION .. 5

3.2 INSTALL RKNN-TOOLKIT（TAKE PYTHON3.5 AS EXAMPLE） ... 5

3.3 EXECUTE THE EXAMPLE ATTACHED IN THE INSTALL PACKAGE ... 6

3.3.1 Simulate the running example on PC .. 6

3.3.2 Example running on RK1808 .. 8

4 WINDOWS PLATFORM QUICK START GUIDE ... 10

4.1 ENVIRONMENTAL PREPARATIONS ... 10

4.2 INSTALL RKNN-TOOLKIT ... 11

4.3 RUNNING THE SAMPLE ATTACHED IN THE INSTALLATION PACKAGE .. 12

5 MAC OS X PLATFORM QUICK START GUIDE ... 15

5.1 ENVIRONMENTAL PREPARATIONS ... 15

5.2 INSTALL RKNN-TOOLKIT .. 15

5.3 RUNNING THE SAMPLE ATTACHED IN THE INSTALLATION PACKAGE .. 16

6 ARM64 PLATFORM (PYTHON 3.5) QUICK START GUIDE ... 18

6.1 ENVIRONMENTAL PREPARATIONS ... 18

6.2 INSTALL RKNN-TOOLKIT .. 18

6.3 RUNNING THE SAMPLE ATTACHED IN THE INSTALLATION PACKAGE .. 19

7 REFERENCE DOCUMENT .. 22

 1

1 Main Features Introduction

RKNN-Toolkit is a software development kit for users to perform model conversion, inference and

performance evaluation on PC, RK3399Pro, RK1808, TB-RK1808S0 AI Compute Stick or RK3399Pro

Linux development board users can easily complete the following functions through the provided python

interface:

1） Model conversion: support to convert Caffe、TensorFlow、TensorFlow Lite、ONNX、Darknet、

Pytorch、MXNetmodel to RKNN model, support RKNN model import/export, which can be

used on hardware platform later. Support for multiple input models starting with version 1.2.0.

Support for Pytorch and MXNet since version 1.3.0, these two features are currently

experimental.

2） Quantization: support to convert float model to quantization model, currently support quantized

methods including asymmetric quantization (asymmetric_quantized-u8) and dynamic fixed

point quantization (dynamic_fixed_point-8 and dynamic_fixed_point-16). Starting with 1.0.0,

RKNN-Toolkit began to support hybrid quantization.

3） Model inference: able to simulate running model on PC and obtain the inference results. Also

able to run model on specific hardware platform RK3399Pro (or RK3399Pro Linux

development board), RK1808, TB-RK1808 AI Compute Stick and obtain the inference results.

4） Performance evaluation: able to simulate running on PC and obtain the total time consumption

and each layer’s time consumption of the model. Also able to run model with on-line

debugging method on specific hardware platform RK3399Pro, RK1808, TB-RK1808 AI

Compute Stick or directly run on RK3399Pro Linux development board to obtain the total time

consumption and each layer’s time consumption when the model runs completely once on the

hardware.

5） Memory evaluation: Evaluate system and NPU memory consumption at runtime of the model.

It can obtain the memory usage through on-line debugging method when the model is running

 2

on specific hardware platform such as RK3399Pro, RK1808, TB-RK1808 AI Compute Stick or

RK3399Pro Linux development board. This feature is supported starting with version 0.9.9

6） Model pre-compilation: with pre-compilation techniques, model loading time can be reduced,

and for some models, model size can also be reduced. However, the pre-compiled RKNN

model can only be run on a hardware platform with an NPU, and this feature is currently only

supported by the x86_64 Ubuntu platform. RKNN-Toolkit supports the model pre-compilation

feature from version 0.9.5, and the pre-compilation method has been upgraded in 1.0.0. The

upgraded precompiled model is not compatible with the old driver.

7） Model segmentation: This function is used in a scenario where multiple models run

simultaneously. A single model can be divided into multiple segments to be executed on the

NPU, thereby adjusting the execution time of multiple models occupying the NPU, and

avoiding other models because one model occupies too much execution time. RKNN-Toolkit

supports this feature from version 1.2.0. This feature must be used on hardware with an NPU

and the NPU driver version is greater than 0.9.8.

8） Custom OP: If the model contains an OP that is not supported by RKNN-Toolkit, it will fail

during the model conversion phase. At this time, you can use the custom layer feature to define

an unsupported OP so that the model can be converted and run normally. RKNN-Toolkit

supports this feature from version 1.2.0. Please refer to the

<Rockchip_Developer_Guide_RKNN_-Toolkit_Custom_OP_CN> document for the use and

development of custom OP.

9） Quantitative error analysis: This function will give the Euclidean or cosine distance of each

layer of inference results before and after the model is quantized. This can be used to analyze

how quantitative error occurs, and provide ideas for improving the accuracy of quantitative

models. This feature is supported from version 1.3.0.

10） Visualization: This function presents various functions of RKNN-Toolkit in the form of a

graphical interface, simplifying the user's operation steps. Users can complete model conversion

 3

and inference by filling out forms and clicking function buttons, and no need to write scripts

manually. Please refer to the < Rockchip_User_Guide_RKNN_Toolkit_Visualization_EN>

document for the use of visualization.

11） Model optimization level: RKNN-Toolkit optimizes the model during model conversion. The

default optimization selection may have some impact on model accuracy. By setting the

optimization level, you can turn off some or all optimization options to analyze the impact of

RKNN-Toolkit model optimization options on accuracy. For specific usage of optimization

level, please refer to the description of optimization_level option in config interface. This

feature is supported from version 1.3.0.

 4

2 System Dependency Introduction

This software development kit supports running on the Ubuntu, Windows, Mac OS X or Debian

operating system. It is recommended to meet the following requirements in the operating system

environment:

Table 1 Operating system environment

Operating system

version

Ubuntu16.04（x64）or later

Windows 7 (x64) or later

Mac OS X 10.13.5 (x64) or later

Debian 9.8 (x64) or later

Python version 3.5/3.6

Python library

dependencies

'numpy == 1.16.3'

'scipy == 1.3.0'

'Pillow == 5.3.0'

'h5py == 2.8.0'

'lmdb == 0.93'

'networkx == 1.11'

'flatbuffers == 1.10',

'protobuf == 3.6.1'

'onnx == 1.4.1'

'onnx-tf == 1.2.1'

'flask == 1.0.2'

'tensorflow == 1.11.0' or 'tensorflow-gpu'

'dill==0.2.8.2'

'ruamel.yaml == 0.15.81'

'psutils == 5.6.2'

'ply == 3.11'

'requests == 2.22.0'

'pytorch == 1.2.0'

'mxnet == 1.5.0'

Note: Only support python3.6 wheel package for Windows and Mac OS X.

 5

3 Ubuntu platform Quick Start Guide

This chapter mainly describes how to quickly setup and use RKNN-Toolkit based on Ubuntu 16.04,

Python3.5.

3.1 Environment Preparation

⚫ One x86_64 bit computer with ubuntu16.04

⚫ One RK1808 EVB board.

⚫ Connect RK1808 device to PC through USB, use ‘adb devices’ command to check, and the result is

as below:

rk@rk:~$ adb devices

List of devices attached

0123456789ABCDEF device

 Note: “0123456789ABCDEF” is device id.

3.2 Install RKNN-Toolkit（Take Python3.5 as example）

1. Install Python3.5

sudo apt-get install python3.5

2. Install pip3

sudo apt-get install python3-pip

3. Obtain RKNN-Toolkit install package, and then execute below steps:

a) Enter package directory:

cd package/

b) Install Python dependency

pip3 install tensorflow==1.11.0

 6

pip3 install mxnet==1.5.0

pip3 install torch==1.2.0 torchvision==0.4.0

pip3 install opencv-python

pip3 install gluoncv

c) Install RKNN-Toolkit

sudo pip3 install rknn_toolkit-1.3.0-cp35-cp35m-linux_x86_64.whl

d) Check if RKNN-Toolkit is installed successfully or not

rk@rk:~/rknn-toolkit-v1.3.0/package$ python3

>>> from rknn.api import RKNN

>>>

 The installation is successful if the import of RKNN module doesn’t fail.

3.3 Execute the example attached in the install package

3.3.1 Simulate the running example on PC

RKNN-Toolkit has a built-in RK1808 simulator which can be used to simulate the action of the

model running on RK1808.

Here take mobilenet_v1 as example. mobilenet_v1 in the example is a Tensorflow Lite model, used

for picture classification, and it is running on simulator.

The running steps are as below:

1. Enter examples/lite/mobilenet_v1 directory

rk@rk:~/rknn-toolkit-v1.3.0/package$ cd ../examples/lite/mobilenet_v1

rk@rk:~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$

2. Execute test.py script

rk@rk:~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$ python3 test.py

3. Get the results after the script execution as below:

--> config model

 7

done

--> Loading model

done

--> Building model

done

--> Export RKNN model

done

--> Init runtime environment

done

--> Running model

mobilenet_v1

-----TOP 5-----

[156]: 0.85107421875

[155]: 0.09173583984375

[205]: 0.01358795166015625

[284]: 0.006465911865234375

[194]: 0.002239227294921875

done

--> Begin evaluate model performance

===

 Performance

===

Layer ID Name Time(us)

0 tensor.transpose_3 72

44 convolution.relu.pooling.layer2_2 363

59 convolution.relu.pooling.layer2_2 201

45 convolution.relu.pooling.layer2_2 185

60 convolution.relu.pooling.layer2_2 243

46 convolution.relu.pooling.layer2_2 98

61 convolution.relu.pooling.layer2_2 149

47 convolution.relu.pooling.layer2_2 104

62 convolution.relu.pooling.layer2_2 120

48 convolution.relu.pooling.layer2_2 72

63 convolution.relu.pooling.layer2_2 101

49 convolution.relu.pooling.layer2_2 92

64 convolution.relu.pooling.layer2_2 99

50 convolution.relu.pooling.layer2_2 110

65 convolution.relu.pooling.layer2_2 107

51 convolution.relu.pooling.layer2_2 212

66 convolution.relu.pooling.layer2_2 107

52 convolution.relu.pooling.layer2_2 212

67 convolution.relu.pooling.layer2_2 107

53 convolution.relu.pooling.layer2_2 212

68 convolution.relu.pooling.layer2_2 107

54 convolution.relu.pooling.layer2_2 212

69 convolution.relu.pooling.layer2_2 107

55 convolution.relu.pooling.layer2_2 212

70 convolution.relu.pooling.layer2_2 107

56 convolution.relu.pooling.layer2_2 174

 8

71 convolution.relu.pooling.layer2_2 220

57 convolution.relu.pooling.layer2_2 353

28 pooling.layer2_1 36

58 fullyconnected.relu.layer_3 110

30 softmaxlayer2.layer_1 90

Total Time(us): 4694

FPS(800MHz): 213.04

===

Done

The main operations of this example include: create RKNN object, model configuration, load

TensorFlow Lite model, structure RKNN model, export RKNN model, load pictures and infer to get

TOP5 result, evaluate model performance, release RKNN object.

Other demos in the examples directory are executed the same way as mobilenet_v1. These models

are mainly used for classification, target detection.

3.3.2 Example running on RK1808

Here take mobilenet_v1 as example. mobilenet_v1 example in the tool package is running on PC

simulator. If want to run the example on RK1808 EVB board, you can refer to below steps:

1. Enter examples/lite/mobilenet_v1 directory

rk@rk:~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$

2. Modify the parameter of initializing environment variable in test.py script

rk@rk:~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$ vim test.py

find the method of initializing environment variable in script init_runtime,

as below

ret = rknn.init_runtime()

modify the parameter of the method

ret = rknn.init_runtime(target=’rk1808’, device_id=’ 0123456789ABCDEF’)

save and exit

3. Execute test.py script, and then get the result as below:

rk@rk:~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$ python test.py

--> config model

done

--> Loading model

 9

done

--> Building model

done

--> Export RKNN model

done

--> Init runtime environment

done

--> Running model

mobilenet_v1

-----TOP 5-----

[156]: 0.85107421875

[155]: 0.09173583984375

[205]: 0.01358795166015625

[284]: 0.006465911865234375

[194]: 0.002239227294921875

done

--> Begin evaluate model performance

===

 Performance

===

Total Time(us): 5805

FPS: 172.27

===

done

 10

4 Windows platform Quick Start Guide

This chapter introduces how to use RKNN-Toolkit on Windows platforms with python 3.6.

4.1 Environmental preparations

⚫ One pc with Windows 7 (64bit) or Windows 10 (64bit).

⚫ One TB-RK1808 AI Compute Stick (Windows platform currently only supports computing sticks).

⚫ Connect TB-RK1808 AI Compute Stick to PC through USB. If this is first time to use TB-RK1808

AI Compute Stick, we need install driver first. Installation method is as follows:

◼ Open SDK package, and enter directory: platform-tools/drivers_installer/windows-x86_64, run

the zadig-2.4.exe program as an administrator to install the computing stick driver:

1. Confirm the equipment and the driver to be installed:

Note: The USB ID should be 2207:0018; the driver choose default: WinUSB.

2. Click Install Driver.

3. If the installation is successful, the following interface will appear:

 11

◼ After installation, if the TB-RK1808 AI Compute Stick in the Windows Device Manager does

not have an exclamation point, and as shown below, the installation is successful.

 Note: Please reboot compute after installing driver.

4.2 Install RKNN-Toolkit

Before install RKNN-Toolkit, make sure python3.6 has been installed. This can be determined by

executing python –version in cmd, as explained below. Python 3.6 is already installed on the system.

Get RKNN-Toolkit SDK package, then perform the following steps:

1. Enter directory: rknn-toolkit-v1.3.0/packages

D:\workspace\rknn-toolkit-v1.3.0>cd packages

2. Install Python dependency.

pip install tensorflow==1.11.0

pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f

https://download.pytorch.org/whl/torch_stable.html --user

pip install mxnet==1.5.0

pip install opencv-python

 12

Note: opencv-python and gluoncv are used in example.

3. Manually install lmdb, in directory：

packages\required-packages-for-win-python36

D:\workspace\rknn-toolkit-v1.3.0\packages\required-packages-for-win-pyt

hon36>pip install lmdb-0.95-cp36-cp36m-win_amd64.whl

4. Install RKNN-Toolkit.

pip install rknn_toolkit-1.3.0-cp36-cp36m-win_amd64.whl

5. Check if RKNN-Toolkit is installed successfully or not.

D:\workspace\rknn-toolkit-v1.3.0\packages>python

Python 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018, 00:16:47) [MSC

v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> from rknn.api import RKNN

>>>

4.3 Running the sample attached in the installation package

Take mobilenet_v1 as an example, which is a Tensorflow Lite model for image classification。

The running steps are as below:

1. Enter examples/lite/mobilenet_v1 directory.

D:\workspace\rknn-toolkit-v1.3.0\packages>cd ..\

D:\workspace\rknn-toolkit-v1.3.0>cd examples\lite\mobilenet_v1

2. Modify the parameter of initializing environment variable in test.py script.

#Befor modifying:

ret = rknn.init_runtime()

#After modifying:

ret = rknn.init_runtime(target='rk1808')

3. Run test.py script

 13

D:\workspace\rknn-toolkit-v1.3.0\examples\lite\mobilenet_v1>python

test.py

4. Get the TOP5 and performance after the script execution as below:

--> config model

done

--> Loading model

done

--> Building model

done

--> Export RKNN model

done

--> Init runtime environment

done

--> Running model

mobilenet_v1

-----TOP 5-----

[156]: 0.8828125

[155]: 0.06768798828125

[188 205]: 0.0086669921875

[188 205]: 0.0086669921875

[263]: 0.006366729736328125

done

--> Begin evaluate model performance

==

 Performance

==

Total Time(us): 6032

FPS: 165.78

==

done

The main operations of this example include: create RKNN object, model configuration, load

TensorFlow Lite model, structure RKNN model, export RKNN model, load pictures and infer to get

TOP5 result, evaluate model performance, release RKNN object.

Other demos in the examples directory are executed the same way as mobilenet_v1. These models

are mainly used for classification, target detection.

Note:

 14

1. Simulator can not run on Windows platform, so we must have a TB-RK1808 AI Compute Stick.

2. For more detail about TB-RK1808 AI Compute Stick, please refer to this link:

http://t.rock-chips.com/wiki.php?mod=view&pid=28

http://t.rock-chips.com/wiki.php?mod=view&pid=28

 15

5 Mac OS X platform Quick Start Guide

This chapter introduces how to use RKNN-Toolkit on Mac OS X platforms with python 3.6.

5.1 Environmental preparations

⚫ One pc with MacOS High Sierra.

⚫ One TB-RK1808 AI Compute Stick.

⚫ Connect TB-RK1808 AI Compute Stick to PC through USB, execute program ‘npu_transfer_proxy’

in directory ‘platform-tools/ntp/mac-osx-x86_64’, check weather TB-RK1808 AI Compute Stick has

connected. Result should looks like below:

macmini:ntp rk$./npu_transfer_proxy devices

List of ntb devices attached

TS018080000000013 2bed0cc1 USB_DEVICE

 Note: The red line is the TB-RK1808 AI Compute Stick. Device id is “TS018080000000013”.

5.2 Install RKNN-Toolkit

Get RKNN-Toolkit SDK package, then perform the following steps:

1. Enter directory: rknn-toolkit-v1.3.0/packages

cd packages/

2. Install Python dependency.

pip3 install tensorflow==1.11.0

pip3 install mxnet==1.5.0

pip3 install torch==1.2.0 torchvision==0.4.0

pip3 install opencv-python

pip3 install gluoncv

Note: opencv-python and gluoncv are used in example.

3. Install RKNN-Toolkit.

 16

pip3 install rknn_toolkit-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl

4. Check if RKNN-Toolkit is installed successfully or not.

(rknn-venv)macmini:rknn-toolkit-v1.3.0 rk$ python3

>>> from rknn.api import RKNN

>>>

5.3 Running the sample attached in the installation package

Take mobilenet_v1 as an example, which is a Tensorflow Lite model for image classification

The running steps are as below:

1. Enter examples/lite/mobilenet_v1 directory.

(rknn-venv)macmini:rknn-toolkit-v1.3.0 rk$ cd examples/lite/mobilenet_v 1

2. Modify the parameter of initializing environment variable in test.py script.

#Befor modifying:

ret = rknn.init_runtime()

#After modifying:

ret = rknn.init_runtime(target='rk1808')

3. Run test.py script

(rknn-venv)macmini:mobilenet_v1 rk$ python3 test.py

4. Get the TOP5 and performance after the script execution as below:

--> config model

done

--> Loading model

done

--> Building model

done

--> Export RKNN model

done

--> Init runtime environment

done

--> Running model

mobilenet_v1

 17

-----TOP 5-----

[156]: 0.85107421875

[155]: 0.09173583984375

[205]: 0.01358795166015625

[284]: 0.006465911865234375

[194]: 0.002239227294921875

done

--> Begin evaluate model performance

==

 Performance

==

Total Time(us): 6046

FPS: 165.40

==

done

The main operations of this example include: create RKNN object, model configuration, load

TensorFlow Lite model, structure RKNN model, export RKNN model, load pictures and infer to get

TOP5 result, evaluate model performance, release RKNN object.

Other demos in the examples directory are executed the same way as mobilenet_v1. These models

are mainly used for classification, target detection.

Note:

1. Simulator can not run on Mac OS X platform, so we must have a TB-RK1808 AI Compute

Stick.

2. For more detail about TB-RK1808 AI Compute Stick, please refer to this link:

http://t.rock-chips.com/wiki.php?mod=view&pid=28

http://t.rock-chips.com/wiki.php?mod=view&pid=28

 18

6 ARM64 platform (Python 3.5) Quick Start Guide

This chapter introduces how to use RKNN-Toolkit on ARM64 platforms (Debian 9.8 systems) with

python3.5.

6.1 Environmental preparations

⚫ An RK3399Pro with Debian 9.8 operating system. Make sure that the remaining space of the root

partition is greater than 5GB.

⚫ Ensure that the NPU driver version is greater than 0.9.6.

⚫ If can not find npu_transfer_proxy or npu_transfer_proxy.proxy in /usr/bin directory, we need copy

the npu_transfer_proxy in rknn-toolkit-v1.3.0\platform-tools\ntp\linux_aarch64 directory to /usr/bin/

directory, and go to the directory and execute the following command (you have to start the program

after each reboot, so please add it to boot script):

sudo ./npu_transfer_proxy &

6.2 Install RKNN-Toolkit

1. Execute the following command to update the system packages which will be used later when

installing Python dependencies.

sudo apt-get update

sudo apt-get install cmake gcc g++ libprotobuf-dev protobuf-compiler

sudo apt-get install liblapack-dev libjpeg-dev zlib1g-dev

sudo apt-get install python3-dev python3-pip python3-scipy

2. Execute the following command to update pip.

pip3 install --upgrade pip

3. Install Python package tool.

 19

pip3 install wheel setuptools

4. Install dependency package h5py.

sudo apt-get build-dep python3-h5py && \

pip3 install h5py

5. Install TensorFlow and the corresponding whl package is in the

rknn-toolkit-v1.3.0\packages\required-packages-for-arm64-debian9-python35 directory.

pip3 install tensorflow-1.11.0-cp35-none-linux_aarch64.whl --user

 Note: Since some libraries that TensorFlow relies on need compile and install on the ARM64

platform after downloading the source code, this step will take a long time.

6. Install opencv-python and the corresponding whl package is in the

`rknn-toolkit-v1.3.0\packages\required-packages-for-arm64-debian9-python35’ directory.

pip3 install \

opencv_python_headless-4.0.1.23-cp35-cp35m-linux_aarch64.whl

7. Install RKNN-Toolkit and the corresponding whl package is in the

rknn-toolkit-v1.3.0\packages directory

pip3 install rknn_toolkit-1.3.0-cp35-cp35m-linux_aarch64.whl --user

 Note: Since some libraries that RKNN-Toolkit relies on need compile and install on the ARM64

platform after downloading the source code, this step will take a long time.

6.3 Running the sample attached in the installation package

Take mobilenet_v1 as an example, which is a Tensorflow Lite model for image classification.

The running steps are as below:

1. Enter examples/lite/mobilenet_v1 directory

linaro@linaro-alip:~/rknn-toolkit-v1.3.0/ $ cd examples/lite/mobilenet_v1

 20

2. Run test.py script

linaro@linaro-alip:

~/rknn-toolkit-v1.3.0/examples/lite/mobilenet_v1$ python3 test.py

3. Get the results after the script execution as below:

--> config model

done

--> Loading model

done

--> Building model

done

--> Export RKNN model

done

--> Init runtime environment

done

--> Running model

mobilenet_v1

-----TOP 5-----

[156]: 0.85107421875

[155]: 0.09173583984375

[205]: 0.01358795166015625

[284]: 0.006465911865234375

[194]: 0.002239227294921875

done

--> Begin evaluate model performance

==

 Performance

==

Total Time(us): 5761

FPS: 173.58

==

done

The main operations of this example include: create RKNN object, model configuration, load

TensorFlow Lite model, structure RKNN model, export RKNN model, load pictures and infer to get

TOP5 result, evaluate model performance, release RKNN object.

Other demos in the examples directory are executed the same way as mobilenet_v1. These models

are mainly used for classification, target detection.

 21

Note:

1. Simulator can not run on ARM64 platform, these models in example are running on built-in

NPU of RK3399Pro.

2. Currently, we can only run RKNN-Toolkit on ARM64 Plarform with RK3399 and RK3399Pro.

If the EVB board is RK3399, we need connect a TB-RK1808 AI Compute Stick.

3. For more detail about TB-RK1808 AI Compute Stick, please refer to this link:

http://t.rock-chips.com/wiki.php?mod=view&pid=28

http://t.rock-chips.com/wiki.php?mod=view&pid=28

 22

7 Reference Document

For more detailed usage and interface descriptions of RKNN-Toolkit, please refer to

<Rockchip_User_Guide_RKNN_Toolkit_V1.3.0_EN.pdf >.

	1 Main Features Introduction
	2 System Dependency Introduction
	3 Ubuntu platform Quick Start Guide
	3.1 Environment Preparation
	3.2 Install RKNN-Toolkit（Take Python3.5 as example）
	3.3 Execute the example attached in the install package
	3.3.1 Simulate the running example on PC
	3.3.2 Example running on RK1808

	4 Windows platform Quick Start Guide
	4.1 Environmental preparations
	4.2 Install RKNN-Toolkit
	4.3 Running the sample attached in the installation package

	5 Mac OS X platform Quick Start Guide
	5.1 Environmental preparations
	5.2 Install RKNN-Toolkit
	5.3 Running the sample attached in the installation package

	6 ARM64 platform (Python 3.5) Quick Start Guide
	6.1 Environmental preparations
	6.2 Install RKNN-Toolkit
	6.3 Running the sample attached in the installation package

	7 Reference Document

