

Radxa SiRider S1 Product Brief

High-Reliability Single Board Computer

Revision 1.0

2024-11-22

Contents

1	Revision Control Table	2
2	Introduction	3
3	Features 3.1 Hardware 3.2 Interface 3.3 Software	3 3 4 5
4	Mechanical Specification	6
5	Electrical Specification 5.1 Power Requirements	6
6	Operating Conditions	7
7	Peripherals 7.1 GPIO Interface	77 77 88 88 99 99 99 99
8	Support	10



1 Revision Control Table

Version	Date	Changes from previous version
1.0	2024/11/22	First version

2 Introduction

The Radxa SiRider S1 is a high-performance Single Board Computer powered by the Siengine SE1000 SoC. It's engineered for applications requiring robust computing and strong security. The SiRider S1 excels in providing stable, efficient solutions, designed to meet the rigorous demands of complex environments.

Note: The actual board layout or components location may change during the time but the main connectors type and location will remain the same

3 Features

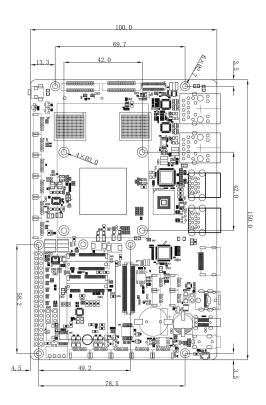
3.1 Hardware

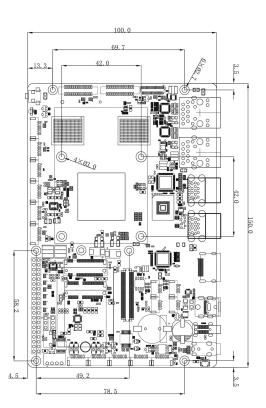
- · Siengine SE1000 SoC
- CPU

- Cluster0: Quad ARM Cortex®-A76 up to 2.4GHz and Dual ARM Cortex®-A55 up to 1.8GHz
- Cluster1: Dual ARM Cortex®-A55 up to 1.8GHz
- Dual HiFi5 DSPs for Audio Processing, Voice Enhanment and AI-based Speed Recognition
- Dual NPUs, one supporting up to 3.34 TOPs and the other up to 3.5 TOPs
- GPU subsystem comprises three components: ARM G76 MP10 3D GPU, ARM G76 MP4 3D GPU and 2D/2.5D GPU.
 - Supporting OpenGL ES 1.1/2.0/3.2
 - Supporting Vulkan 1.0
 - Supporting OpenCL 2.0
- Safety Processor Single ARM Cortex-R52 up to 1.0GHz with DCLS meeting ISO 26262
 ASIL-D safety level requirements
- · LPDDR5 RAM up to 16GB
- Onboard UFS 3.0
- Dual ISP each up to 800 Mpixel/s, total up to 1600Mpixel/s
- Multimedia decoder up to 4K@120fps
- Decoding Formats: H.264, H.265, VP9, AVS2 etc
- Multimedia encoder up to 4K@60fps
- Encoding Formats: H.264, H.265, JPEG

3.2 Interface

- · 2x Gigabit Ethernet Ports
- 4x USB 3.0 HOST Type-A Ports
- 4x USB 2.0 HOST via 4-Pin 1.25mm Pitch Connector
- 1x USB 2.0 OTG / HOST Type-C Port for Debug and Data
- 1x Headphone Jack with Microphone Input
- 1x M.2 E Key Connector for WiFi 6
- 1x SIM Card Slot
- 1x M.2 B Key Connector for 4G / 5G Mobile Network
- 1x M.2 M Key Connector with PCIe 3.0 2-lane for NVMe SSD
- 1x HDMI TX
- 1x 4-lane MIPI DSI for MIPI LCD
- 2x 2-lane MIPI CSI for Camera
- 1x microSD Card Slot


- 1x RTC Socket
- 1x Fan Header with PWM control via 2-Pin 1.25 pitch connector
- 11x 6-Pin 1.25 Pitch Connector have the following features:
 - 2x I2C
 - 2x I2S
 - 2x UART
 - 1x RS232/RS485
 - 1x CAN
 - 2x DIO In
 - 1x DIO Out
- 40-Pin 2.54mm Pitch header supporting a wide range of interface options:
 - UART
 - **-** I2C
 - SPI
 - GPIO


3.3 Software

- · ARMV8 Instruction Set
- Debian Linux support
- Android support
- · Hardware access/control library for Linux/Android

4 Mechanical Specification

5 Electrical Specification

5.1 Power Requirements

The Radxa SiRider S1 supports various power supply technologies including smart power adapter as well as fixed voltage:

- USB Type-C PD Version 2.0 with 9V, 12V, 15V and 20V input support
- Power adapter with fixed voltage in 5V to 20V range on the USB Type-C port
- 5V Power applied to the GPIO PIN 2 & 4

The recommended power source should be able to produce, at least, 12W without power consuming devices on USB 3 or 20W with full USB ports and PCIe 3.0 load.

5.2 GPIO Voltage

GPIO	Voltage Level	Tolerance
All GPIO	3.3V	3.63V
SARADC_IN5	3.3V	3.3V

6 Operating Conditions

To ensure optimal performance and prevent overheating in high-temperature environments, the use of appropriate heat dissipation devices, such as heatsinks or cooling fans, is required. This ensures stable operation even under heavy workloads or in extreme conditions. Proper thermal management is crucial for maintaining the longevity and reliability of the system in applications.

7 Peripherals

7.1 GPIO Interface

The SiRider S1 offers a 40 pin GPIO expansion header which provides extensive compatibility with a wide range of accessories developed for the SBC market.

7.1.1 GPIO Alternate Functions

Pin#	Function1	Function2	Function3	Function4	Function5
1	+3.3V	+3.3V			
2	+5.0V	+5.0V			
3		PERI1_GPIO2	PERI1_UART_5_TX	PERI1_I2C_7_SDA	
4	+5.0V	+5.0V			
5		PERI1_GPIO3	PERI1_UART_5_RX	PERI1_I2C_7_SCL	
6	GND	GND			
7		SAF_UART_2_TX	PERI1_GPIO1	PERI2_SPI_MST_1_SCLK	PERI2_SPI_SLV_1_SCLK
8		PERI1_GPIO3	PERI1_UART_11_CTS	PERI1_UART_12_TX	PERI1_I2C_14_SDA
9	GND	GND			
10		PERI1_GPIO3	PERI1_UART_11_RTS	PERI1_UART_12_RX	PERI1_I2C_14_SCL
11	SAF_UART_2_RX	PERI2_GPIO1	PERI2_SPI_MST_1_SS0	PERI2_SPI_SLV_1_SS	
12	SAF_SPI_MST_1_SS0	PERI2_GPIO0	PERI2_SPI_SLV_0_SS		
12	3AF_3F1_M31_1_330	PERIZ_GPIOU	PERIZ_SPI_SEV_U_SS		

Pin#	Function1	Function2	Function3	Function4	Function5
13	SAF_GPIO1	PERI1_GPIO4			
14	GND	GND			
15	SAF_QSPI_SS1	PERI2_GPIO1			
16		PERIO_GPIO1	I2S2_SCK		
17	+3.3V	+3.3V			
18		PERIO_GPIO1	12S2_WS		
19	SAF_SPI_MST_0_MOSI	PERI2_GPIO0	SAF_I2C_4_SCL		
20	GND	GND			
21	SAF_SPI_MST_0_MISO	PERI2_GPIO0			
22		PERIO_GPIO1	12S_DO		
23	SAF_SPI_MST_0_SCLK	PERI2_GPIO0			
24	SAF_SPI_MST_0_SS0	PERI2_GPIO0			
25	GND	GND			
26	SAF_SPI_MST_0_SS1	PERI2_GPIO0	GP_CLK0	SAF_PWM_0	
27		PERI1_GPIO3	PERI1_UART_5_CTS	PERI1_UART_6_TX	PERI1_I2C_8_SDA
28		PERI1_GPIO3	PERI1_UART_5_RTS	PERI1_UART_6_RX	PERI1_I2C_8_SCL
29	SAF_GPIO2				
30	GND	GND			
31	SoC_Fault0				
32	SAF_GPIO5		PERI2_UART_1_CTS	PERI2_I2C_1_SDA	
33	SAF_GPIO6		PERI2_UART_1_RTS		
34	GND	GND			
35	SAF_SPI_MST_1_MISO	PERI2_GPIO0	SAF_I2C_5_SDA		
36		PERIO_GPIO1	12S2_DI		
37	SoC_Fault1				
38	SAF_SPI_MST_1_MOSI	PERI2_GPIO0	SAF_I2C_5_SCL	PERI2_SPI_SLV_0_MISO	
39	GND	GND			
40	SAF_SPI_MST_1_SCLK	PERI2_GPIO0	PERI2_SPI_SLV_0_SCLK		

Note: Function 1 is a feature enabled in Safety Mission Mode(safety_enable = 1).

7.2 Network

The SiRider S1 offers two 10/100/1000Mbps RJ45 connector for wired networking.

7.3 USB

The SiRider S1 provides the following USB ports: Four USB 3.0 HOST Type-A ports with high data transfer rates (up to 5 Gbps) for connections with high data transfer requirements, four USB 2.0 HOST with via a 4-pin, 1.25mm pitch connector used to meet the needs of those who require a compact design and one USB 2.0 OTG / HOST Type-A Port for Debug.

7.4 M.2 M Key Connector

The SiRider S1 presents an M.2 M Key 2280 SSD socket with PCIe 3.0 x 2-lane interfaces, delivering swift and efficient storage access, synonymous with high-speed performance.

7.5 M.2 E Key Connector

The SiRider S1 boasts an M.2 E Key socket, offering a versatile array of interfaces including PCIe 3.0 x 1-lane and USB. This configuration greatly facilitates high-speed WiFi and Bluetooth connectivity, including support for the latest WiFi 6 standards.

7.6 M.2 B Key Connector

The SiRider S1 offers a USB interface through its M.2 B Key socket. When combined with a SIM card (the SE1000 features a SIM slot), it enables high-speed 4G / 5B mobile phone connectivity and guarantees compatibility with standard M.2 3042 B Key modules.

7.7 Video Input

The SiRider S1 has two 2-lane MIPI CSI Connector for Camera. These connectors are designed for Radxa Camera accessories and also backwards compatible with standard industrial camera peripherals with adapter FPC cables by Radxa.

7.8 Video Output

The SiRider S1 has two Standard HDMI output ports and one 4-lane MIPI DSI Connector for MIPI LCD. The MIPI DSI Interface are designed for Radxa Display accessories and also backwards compatible with standard industrial display peripherals with adapter FPC cables by Radxa.

7.9 Audio Jack

The SiRider S1 supports high quality analogue audio output via a 4-ring 3.5mm headphone jack. The analog audio output can drive 32 Ohm headphones directly. The audio jack also supports microphone input as default.

7.10 Fan Connector

The SiRider S1 has a 2pin 1.25mm header that enables users to connect a 5V fan (or other peripheral). The fan can be PWM controlled without speed feedback.

8 Support

For support please see the hardware documentation section of the Radxa Website and post questions to the Radxa forum.