

TEST REPORT

Report No.:	BCTC2409825918-5E
Applicant:	Radxa Computer (Shenzhen) Co.,Ltd.
Product Name:	Radxa X4
Test Model:	Radxa X4 D8E64R30W16
Tested Date:	2024-09-30 to 2024-10-18
Issued Date:	2024-10-29
She	enzhen BCTC Testing Co., Ltd.

No. : BCTC/RF-EMC-005

Page 1 of 55

Product Name:	Radxa X4
Trademark:	Radxa X4 D8E64R30W16 Radxa X4 D4E32R30W16, Radxa X4 D4E0R30W16, Radxa X4 D8E64R30W16,
Model/Type reference:	Radxa X4 D4E32R30W16, Radxa X4 D4E6R30W16, Radxa X4 D5E64R30W16, Radxa X4 D8E0R30W16, Radxa X4 D12E128R30W16, Radxa X4 D12E0R30W16, Radxa X4 D16E256R30W16, Radxa X4 D16E0R30W16
Prepared For:	Radxa Computer (Shenzhen) Co.,Ltd.
Address:	1602, Smart Valley, tiezai Road, Gongle community, Xixiang, Baoan, Shenzhen
Manufacturer:	Radxa Computer (Shenzhen) Co.,Ltd.
Address:	1602, Smart Valley, tiezai Road, Gongle community, Xixiang, Baoan, Shenzhen
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-09-30
Sample tested Date:	2024-09-30 to 2024-10-18
Issue Date:	2024-10-29
Report No.:	BCTC2409825918-5E
Test Standards	ETSI EN 300 328 V2.2.2 (2019-07)
Test Results	PASS
Remark:	This is WIFI-2.4GHz band radio test report.

Tested by: Shanshan. Zhang

Shanshan Zhang/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page 2 of 55

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	
4.4	Channel List	9
4.5	Test Mode	9
4.6	Test Environment	9
5.	Test Facility And Test Instrument Used	10
5.1	Test Facility	10
5.2	Test Instrument Used	10
6.	Information As Required	11
7.	RF Output Power.	
7.1	Block Diagram Of Test Setup	14
7.2	Limit	14
7.3	Test Procedure	14
7.4	Test Result	16
8.	Power Spectral Density	19
8.1	Block Diagram Of Test Setup	
8.2	Limit	19
8.3	Test Procedure	19
8.4	Test Result	20
9.	Adaptivity	23
9.1	Block Diagram Of Test Setup	23
9.2	Limit	23
9.3	Test Procedure	24
9.4	Test Result	25
10.	Occupied Channel Bandwidth	
10.1	Block Diagram Of Test Setup	
10.2	Limit	26
10.3	Test Procedure	
10.4		
11.	Transmitter Unwanted Emissions In The Out-Of-Band Domain	
11.1	Block Diagram Of Test Setup Limit Test Procedure	
11.2	Limit	35
11.3	Test Procedure	35
11.4		37
12.	Transmitter Unwanted Emissions In The Spurious Domain	43
12.1	Block Diagram Of Test Setup Limits Test Procedure	43
12.2	Limits	44
12.3	Test Procedure	

Page 3 of 55

,TC 3C

PR

еро

12.4	Test Results	.45
13.	Receiver Spurious Emissions	.46
13.1	Block Diagram Of Test Setup	.46
13.2	Limits	.47
13.3	Test Procedure	.47
13.4	Test Results	.48
14.	Receiver Blocking	.49
14.1	Block Diagram Of Test Setup	.49
	Limit	
	Test Procedure	
14.4	Test Result	.50
15.	EUT Photographs	.51
16.	EUT Test Setup Photographs	.54
	· - ·	

(Note: N/A Means Not Applicable)

t Sea

1. Version

Report No.	Issue Date	Description	Approved
BCTC2409825918-5E	2024-10-29	Original	Valid

Page 5 of 55

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results					
	Transmitter Parameters							
1	RF output power	4.3.2.2	PASS					
2	Power Spectral Density	4.3.2.3	PASS					
3	Duty Cycle, Tx-sequence, Tx-gap	4.3.2.4	N/A					
4	Medium Utilisation (MU) factor	4.3.2.5	N/A					
5	Adaptivity (adaptive equipment using modulations other than FHSS)	4.3.2.6	N/A					
6	Occupied Channel Bandwidth	4.3.2.7	PASS					
7	Transmitter unwanted emissions in the out-of-band domain	4.3.2.8	PASS					
8	Transmitter unwanted emissions in the spurious domain	4.3.2.9	PASS					
	Receiver Parameters							
9	Receiver spurious emissions	4.3.2.10	PASS					
10	Receiver Blocking	4.3.2.11	PASS					
11	Geo-location Capability	4.3.2.12	N/A					

Remark:

N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

CO.,L75

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

RF frequency	1 x 10 ⁻⁷
RF power, conducted	± 1.0 dB
Conducted spurious emission (30MHz-1GHz)	1.28 dB
Conducted spurious emission (1GHz-18GHz)	1.576 dB
Radiated Spurious emission (30MHz-1GHz)	4.30 dB
Radiated Spurious emission (1GHz-18GHz)	4.5 dB
Temperature	0.59 ℃
Humidity	5.3 %

No.: BCTC/RF-EMC-005

Page 7 of 55

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference	Radxa X4 D8E64R30W16 Radxa X4 D4E32R30W16, Radxa X4 D4E0R30W16, Radxa X4 D8E64R30W16, Radxa X4 D8E0R30W16, Radxa X4 D12E128R30W16, Radxa X4 D12E0R30W16, Radxa X4 D16E256R30W16, Radxa X4 D16E0R30W16
Model differences:	All the model are the same circuit and RF module, except model names and internal storage.
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	WIFI(2.4GHz): IEEE 802.11b/g/n HT20/ ax HT20: 2412MHz-2472MHz IEEE 802.11n HT40/ ax HT40: 2422MHz-2462MHz
Max. RF output power:	WIFI(2.4GHz) : Antenna A: 11.23 dBm, Antenna B: 11.26 dBm, MIMO: 12.83 dBm
Type of Modulation:	WIFI(2.4GHz): DSSS, OFDM, OFDMA
Antenna installation:	WIFI(2.4GHz): FPC antenna
Antenna Gain:	 WIFI(2.4GHz): Antenna A: 1.65 dBi, Antenna B: 1.65 dBi Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. The antenna gain of the product is provided by the customer, and the test data is affected by the customer, and the test data is affected by the customer, and the test data
Ratings:	DC 12V from adapter

Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1			Applicant		No	With a ferrite ring in mid Detachable
2			BCTC		No	

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

Page 8 of 55

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
1.	ADAPTER	Hoco.	N18		
2.	Display	AOC	T2264MD		
3.	Display	AOC	24G2		
4.	Earphone	IHIP	SBGE1		
5.	Disk	INTEL	256G		
6.	Disk	Samsung	250G		
7.	keyboard	Logitech	1641MG01DLZ8		
8.	Mouse	Logitech	M-U0026		

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	2467
13	2472						

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting(802.11b/g/n20/ax20)	2412MHz	2442MHz	2472MHz
Transmitting(802.11n40/ax40)	2422MHz	2442MHz	2462MHz
Receiving(802.11b/g/n20/ax20)	2412MHz	2442MHz	2472MHz
Receiving(802.11 n40/ax40)	2422MHz	2442MHz	2462MHz

4.6 Test Environment

1. Normal Test Conditions:	\sim
Humidity(%):	54
Atmospheric Pressure(kPa):	101
Temperature(°C):	26
Test Voltage(DC):	12V

2.Extreme Test Conditions:

For tests at extreme temperatures, measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.

Test Conditions	LT		нт	
Temperature (°C)	0	 · · · · · · · · · · · · · · · · · · ·	35	

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

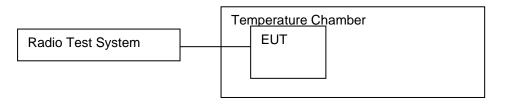
Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
2	Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
3	Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
4	Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
5	TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	942	May 21, 2024	May 20, 2025
6	Loop Antenna	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
7	Amplifier	SKET	LAPA_01G18 G-45dB	SK2021040901	May 16, 2024	May 15, 2025
8	Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
9	Preamplifier	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
10	Horn antenna	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
11	Spectrum Analyzer 9kHz-40GHz	R&S	FSP 40	100363	May 16, 2024	May 15, 2025
12	Software	Frad	EZ-EMC	FA-03A2 RE		λ
13	Spectrum Analyzer	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025
14	Signal Generator	Keysight	N5182B	MY56200519	May 16, 2024	May 15, 2025
15	Signal Generator	Keysight	83711B	US37100131	May 16, 2024	May 15, 2025
16	Communication test set	R&S	CMW500	126173	Nov. 13. 2023	Nov. 12, 2024
17	D.C. Power Supply	LongWei	TPR-6405D		Nov. 13. 2023	Nov. 12, 2024
18	Programmable constant temperature and humidity test chamber	DGBELL	BTKS5-150C	······································	Jul. 01, 2023	Jun. 30, 2025
19	Radio frequency control box	MAIWEI	MW100-RFC B			\
20	Software	MAIWEI	MTS 8310		·····	\sim

6. Information As Required

ETSI EN 300 328 V2.1.1 Annex E
a) The type of modulation used by the equipment:
Sother forms of modulation
b) In case of FHSS modulation:
In case of non-Adaptive Frequency Hopping equipment:
The number of Hopping Frequencies: _
In case of Adaptive Frequency Hopping Equipment:
The maximum number of Hopping Frequencies:
The minimum number of Hopping Frequencies:
The (average) Dwell Time: <u>maximum</u>
c) Adaptive / non-adaptive equipment:
non-adaptive Equipment
adaptive Equipment without the possibility to switch to a non-adaptive mode
adaptive Equipment which can also operate in a non-adaptive mode
d) In case of adaptive equipment:
The Channel Occupancy Time implemented by the equipment:
The equipment has implemented an LBT based DAA mechanism
In case of equipment using modulation different from FHSS:
The equipment is Frame Based equipment
The equipment is Load Based equipment
The equipment can switch dynamically between Frame Based and Load Based equipment
The CCA time implemented by the equipment: µs
The equipment has implemented an non-LBT based DAA mechanism
The equipment can operate in more than one adaptive mode
e) In case of non-adaptive Equipment:
The maximum RF Output Power (e.i.r.p.): _
The maximum (corresponding) Duty Cycle:
Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations
of duty cycle and corresponding power levels to be declared):
f) The worst case operational mode for each of the following tests:
RF Output Power: 802.11b
Power Spectral Density: 802.11b
Duty cycle, Tx-Sequence, Tx-gap
Accumulated Transmit time, Frequency Occupation &
Hopping Sequence (only for FHSS equipment):
Hopping Frequency Separation (only for FHSS equipment):
Medium Utilization:
Adaptivity:
Nominal Channel Bandwidth: 802.11n (HT40)
Transmitter unwanted emissions in the OOB domain: 802.11g
Transmitter unwanted emissions in the spurious domain: 802.11b
Receiver spurious emissions : 802.11b
Receiver blocking : 802.11b
g) The different transmit operating modes (tick all that apply):
Operating mode 1: Single Antenna Equipment
Equipment with only one antenna
Equipment with two diversity antennas but only one antenna active at any moment in time
Signart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only
Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only One antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)
One antenna is used (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)

High Throughput (> 1 sp	atial stream) using N	Nominal Channel E	Bandwidth 2
NOTE 1: Add more lines if m			
Operating mode 3: Smart			
Single spatial stream / S			
High Throughput (> 1 sp			
High Throughput (> 1 sp			
NOTE 2: Add more lines if m			
h) In case of Smart Antenna S			
The number of Receive chair	IS:		
The number of Transmit chai	ns:		
symmetrical power distri	bution		
asymmetrical power dist			
In case of beam forming, the		al) beam forming g	ain:
NOTE: The additional beam f			
i) Operating Frequency Range			- 3
Operating Frequency Range			
Operating Frequency Range			
NOTE: Add more lines if mor		s are supported.	
j) Nominal Channel Bandwidt			
Nominal Channel Bandwidth		2.11ax40) Max.	
NOTE: Add more lines if mor			
k) Type of Equipment (stand-			ce. etc.):
Stand-alone	,, p		
	ipment where the ra	adio part is fully int	egrated within another type of
equipment)			
Plug-in radio device (Equip	ment intended for a	variety of host sys	stems)
I) The normal and the extreme	e operating condition	ons that apply to	the equipment:
Refer to section 4.6	operating contains	one that apply to	
	(s) of the radio equ	lipment power se	ettings and one or more antenna
m) The intended combination			ettings and one or more antenna
m) The intended combination assemblies and their corre			ettings and one or more antenna
m) The intended combination			ettings and one or more antenna
m) The intended combination assemblies and their correct Antenna Type:	esponding e.i.r.p. le		ettings and one or more antenna
 m) The intended combination assemblies and their correct Antenna Type: ☑ External Antenna Antenna Gain: Refer to see 	esponding e.i.r.p. le	evels:	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional beat 	esponding e.i.r.p. le ction 4.1 amforming gain (excl	evels:	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector 	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided	evels:	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector 	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided ctor provided	uding basic anten	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF conne Dedicated Antennas (equip 	esponding e.i.r.p. le extion 4.1 amforming gain (excl r provided ctor provided oment with antenna	uding basic anten	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF conne Dedicated Antennas (equip Single power level with or 	esponding e.i.r.p. le amforming gain (excl r provided ctor provided oment with antenna o corresponding anten	uding basic anten connector) na(s)	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector Dedicated Antennas (equip Single power level with or Multiple power settings a 	esponding e.i.r.p. le stion 4.1 amforming gain (excl r provided ctor provided oment with antenna o corresponding anten and corresponding a	uding basic anten connector) na(s)	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector Dedicated Antennas (equip Single power level with or Multiple power settings a Number of different Power 	esponding e.i.r.p. le stion 4.1 amforming gain (excl r provided ctor provided oment with antenna o corresponding anten and corresponding a	uding basic anten connector) na(s)	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector Dedicated Antennas (equining) Single power level with or Multiple power settings a Number of different Power Power Level 1: 	esponding e.i.r.p. le stion 4.1 amforming gain (excl r provided ctor provided oment with antenna o corresponding anten and corresponding a	uding basic anten connector) na(s)	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector Dedicated Antennas (equining) Single power level with one Multiple power settings a Number of different Power Power Level 1: Power Level 2: 	esponding e.i.r.p. le stion 4.1 amforming gain (excl r provided ctor provided oment with antenna o corresponding anten and corresponding a	uding basic anten connector) na(s)	
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF conne Dedicated Antennas (equining) Single power level with one Multiple power settings and Number of different Power Power Level 1: Power Level 2: Power Level 3: 	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided ctor provided oment with antenna of corresponding anten and corresponding a Levels:	evels: uding basic anten connector) na(s) ntenna(s)	na gain):
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to seed If applicable, additional beat Temporary RF connector No temporary RF connector Dedicated Antennas (equip Single power level with one settings at Number of different Power Power Level 1: Power Level 3: NOTE 1: Add more lines in cat 	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided ctor provided oment with antenna of corresponding anten and corresponding a Levels: ase the equipment h	evels: uding basic anten connector) na(s) ntenna(s) as more power lev	na gain):
 m) The intended combination assemblies and their correlation Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connecto No temporary RF connecto Dedicated Antennas (equip Single power level with one settings and Multiple power settings and Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in care NOTE 2: These power levels 	esponding e.i.r.p. le stion 4.1 amforming gain (excl r provided ctor provided oment with antenna of corresponding anten and corresponding a Levels: ase the equipment h are conducted powe	evels: uding basic anten connector) na(s) ntenna(s) as more power lever er levels (at anten	na gain): /els. na connector).
 m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connector No temporary RF connector Dedicated Antennas (equip Single power level with or Multiple power settings at Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in cat NOTE 2: These power levels For each of the Power Levels 	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided ctor provided corresponding anten and corresponding a Levels: ase the equipment h are conducted powe , provide the intende	evels: uding basic anten connector) na(s) ntenna(s) as more power lev er levels (at anten ed antenna assem	na gain): ////////////////////////////////////
 m) The intended combination assemblies and their correlation assemblies and their correlation assemblies and their correlation assemblies and their correlation and the combination and the combinati	esponding e.i.r.p. le ction 4.1 amforming gain (excl r provided ctor provided corresponding anten and corresponding a Levels: ase the equipment h are conducted powe , provide the intende	evels: uding basic anten connector) na(s) ntenna(s) as more power lev er levels (at anten ed antenna assem	na gain): ////////////////////////////////////
m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to sec If applicable, additional bea Temporary RF connecto No temporary RF connecto Dedicated Antennas (equip Single power level with o Multiple power settings a Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in ca NOTE 2: These power levels For each of the Power Levels and the resulting e.i.r.p. level Power Level 1:	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power levels er levels (at anten ed antenna assem count the beamfor	na gain): ////////////////////////////////////
 m) The intended combination assemblies and their correlation assemblies and their correlation assemblies and their correlation assemblies and their correlation and the combination and the combinati	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power levels er levels (at anten ed antenna assem count the beamfor	na gain): ////////////////////////////////////
m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to sec If applicable, additional bea Temporary RF connecto No temporary RF connecto Dedicated Antennas (equip Single power level with o Multiple power settings a Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in ca NOTE 2: These power levels For each of the Power Levels and the resulting e.i.r.p. level Power Level 1:	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power levels er levels (at anten ed antenna assem count the beamfor	na gain): ////////////////////////////////////
m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to see If applicable, additional bea Temporary RF connecto No temporary RF connecto Dedicated Antennas (equip Single power level with o Multiple power settings a Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in ca NOTE 2: These power levels For each of the Power Levels and the resulting e.i.r.p. level Power Level 1: Number of antenna assem	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power lever er levels (at anten ed antenna assem count the beamfor s power level:	na gain): vels. na connector). blies, their corresponding gains (G) ming gain (Y) if applicable
m) The intended combination assemblies and their correct Antenna Type: External Antenna Antenna Gain: Refer to sec If applicable, additional bea Temporary RF connecto No temporary RF connecto Dedicated Antennas (equip Single power level with o Multiple power settings a Number of different Power Power Level 1: Power Level 2: Power Level 3: NOTE 1: Add more lines in ca NOTE 2: These power levels For each of the Power Levels and the resulting e.i.r.p. level Power Level 1:	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power levels er levels (at anten ed antenna assem count the beamfor	na gain): ////////////////////////////////////
 m) The intended combination assemblies and their correlation of the internal and their correlation of the internal and their correlation of the internal and the intern	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power lever er levels (at anten ed antenna assem count the beamfor s power level:	na gain): vels. na connector). blies, their corresponding gains (G) ming gain (Y) if applicable
 m) The intended combination assemblies and their correlation of the internal sector of the internal secto	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power lever er levels (at anten ed antenna assem count the beamfor s power level:	na gain): vels. na connector). blies, their corresponding gains (G) ming gain (Y) if applicable
 m) The intended combination assemblies and their correlation of the internal and their correlation of the internal and their correlation of the internal and the intern	esponding e.i.r.p. le	evels: uding basic anten connector) na(s) ntenna(s) as more power lever er levels (at anten ed antenna assem count the beamfor s power level:	na gain): vels. na connector). blies, their corresponding gains (G) ming gain (Y) if applicable

a 00.,LT



NOTE 3: Add more rows Power Level 2:	in case more antenna	a assemblies are su	pported for this power level.
Number of antenna asser	mblies provided for th	nis nower level:	
Number of antenna asser			
Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3			
4			
	in case more antenna	a assemblies are su	pported for this power level.
Power Level 3:			
Number of antenna asser	nblies provided for th	nis power level:	
Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3			
4			
			ipported for this power level.
			or the nominal voltages of the
combined (host) equi Refer to section 4.	pment or test jig in	case of plug-in de	vices:
o) Describe the test mo	doe available which	o can facilitato tost	ina:
o) Describe the test mo	ues avaliable which	i can lacintate test	ing.
p) The equipment type (e.a. Bluetooth®. IEI	EE 802.11™ [i.3]. II	EEE 802.15.4™ [i.4], proprietary,
etc.):			
q) If applicable, the stat	istical analysis refe	rred to in clause 5.	.4.1 q)
(to be provided as s	eparate attachment)		
r) If applicable, the stat		rred to in clause 5.	.4.1 r)
(to be provided as sepa			
s) Geo-location capabili	ty supported by the	equipment:	
			defined in clause 4.3.1.13.2 or
	not accessible to the	user	
No	norformance arite	ria that apply to th	e equipment (see clause 4.3.1.12.3
or clause 4.3.2.11.3):	in performance crite	ha that apply to th	e equipment (see clause 4.3.1.12.3
			\cdot
		<u></u>	······································
		5	< N N N N N N H H H
		in the second	MHHHAZZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZA
			医二氟二氟 医人名法法法法法法法法

7. RF Output Power

7.1 Block Diagram Of Test Setup

7.2 Limit

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier. This limit shall apply for any combination of power level and intended antenna assembly.

Limit	
20dBm	

7.3 Test Procedure

Step 1:

- Use a fast power sensor suitable for 2.4 GHz and capable of minimum 1 MS/s.
- Use the following settings:
- Sample speed 1 MS/s or faster.
- The samples shall represent the RMS power of the signal.

- Measurement duration: For non-adaptive equipment: equal to the observation period defined in clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.

NOTE 1: For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.

Step 2:

• For conducted measurements on devices with one transmit chain:

- Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.

· For conducted measurements on devices with multiple transmit chains:

- Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.

- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.

- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.

Page 14 of 55

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.

NOTE 2: In case of insufficient dynamic range, the value of 30 dB may need to be reduced appropriately. **Step 4:**

• Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these Pburst values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with 'k' being the total number of samples and 'n' the actual sample number

Step 5:

• The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculations. **Step 6:**

• Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.

• If applicable, add the additional beamforming gain "Y" in dB.

• If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.

• The RF Output Power (P) shall be calculated using the formula below:

• This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.

ТC

ероі

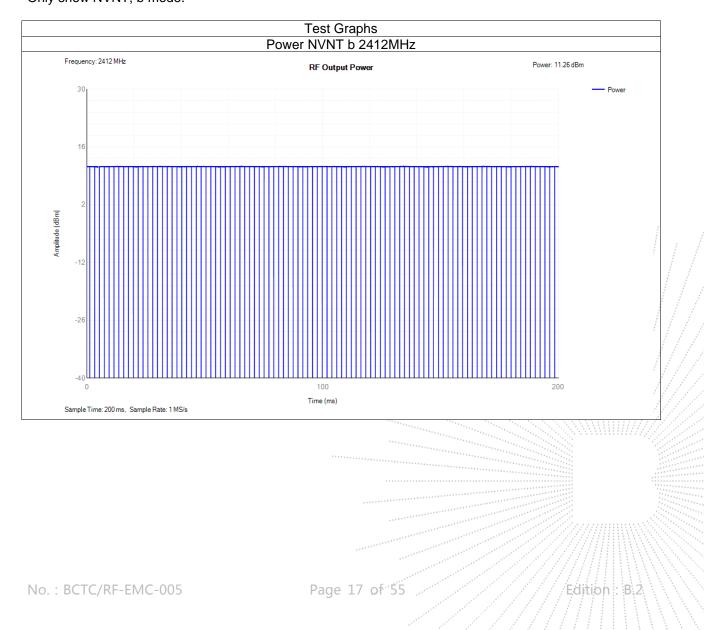
Page 15 of 55

7.4 Test Result

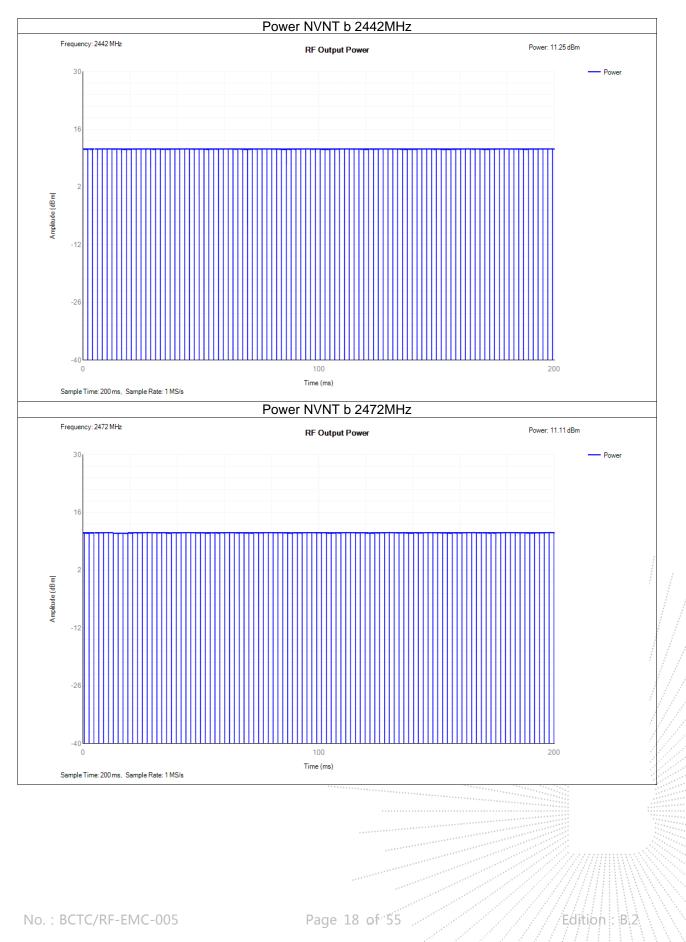
Condition	Mode	Frequency (MHz)	Max EIRP (dBm) Ant A	Max EIRP (dBm) Ant B	Total EIRP	Limit (dBm)	Verdict
NVNT	b	2412	11.07	11.26	/	20	Pass
NVNT	b	2442	11.23	11.25	/	20	Pass
NVNT	b	2472	10.93	11.11	/	20	Pass
NVNT	g	2412	10.8	10.55	/	20	Pass
NVNT	g	2442	10.64	10.72	/	20	Pass
NVNT	g	2472	10.41	10.18	/	20	Pass
NVNT	n20	2412	9.95	9.68	12.83	20	Pass
NVNT	n20	2442	9.73	9.83	12.79	20	Pass
NVNT	n20	2472	9.47	9.24	12.37	20	Pass
NVNT	n40	2422	8.37	8.56	11.48	20	Pass
NVNT	n40	2442	8.33	8.51	11.43	20	Pass
NVNT	n40	2462	8.11	8.12	11.13	20	Pass
NVNT	ax20	2412	9.82	9.68	12.76	20	Pass
NVNT	ax20	2442	9.72	9.83	12.79	20	Pass
NVNT	ax20	2472	9.45	9.29	12.38	20	Pass
NVNT	ax40	2422	8.47	8.63	11.56	20	Pass
NVNT	ax40	2442	8.45	8.7	11.59	20	Pass
NVNT	ax40	2462	8.25	8.28	11.28	20	Pass
NVLT	b	2412	10.97	11.23	/	20	Pass
NVLT	b	2442	11.10	11.12	/	20	Pass
NVLT	b	2472	10.86	10.96	/	20	Pass
NVLT	g	2412	10.78	10.45	/	20	Pass
NVLT	g	2442	10.62	10.68	/	20	Pass
NVLT	g	2472	10.38	10.17	/	20	Pass
NVLT	n20	2412	9.89	9.62	12,76	20	Pass
NVLT	n20	2442	9.68	9.76	12.73	20	Pass
NVLT	n20	2472	9.37	9.18	12.29	20	Pass
NVLT	n40	2422	8.26	8.42	11.35	20	Pass
NVLT	n40	2442	8.22	8.39	11.32	20	Pass
NVLT	n40	2462	8.10	8.02	11.07	20	Pass
NVLT	ax20	2412	9.82	9.58	12.71	20	Pass
NVLT	ax20	2442	9.68	9.69	12.70	20	Pass
NVLT	ax20	2472	9.43	9.19	12.32	20	Pass
NVLT	ax40	2422	8.38	8.52	11.46	20	Pass
NVLT	ax40	2442	8.33	8.64	11.50	20	Pass
NVLT	ax40	2462	8.23	8.17	11.21	20	Pass
NVHT	b	2412	10.96	11.21	<u> </u>	20	Pass
NVHT	b	2442	11.09	11.08		20	Pass
NVHT	b	2472	10.73	10.82		20	Pass
NVHT	g	2412	10.75	10.43		20	Pass
NVHT	g	2442	10.55	10.65	and the second	20	Pass

No.: BCTC/RF-EMC-005

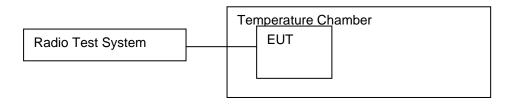
Page 16 of 55


Edition : B.2

t Sea


NVHT	g	2472	10.25	10.13	/	20	Pass
NVHT	n20	2412	9.79	9.48	12.65	20	Pass
NVHT	n20	2442	9.59	9.66	12.63	20	Pass
NVHT	n20	2472	9.26	9.05	12.17	20	Pass
NVHT	n40	2422	8.15	8.36	11.27	20	Pass
NVHT	n40	2442	8.22	8.24	11.24	20	Pass
NVHT	n40	2462	8.00	7.99	11.01	20	Pass
NVHT	ax20	2412	9.71	9.44	12.59	20	Pass
NVHT	ax20	2442	9.64	9.63	12.64	20	Pass
NVHT	ax20	2472	9.39	9.13	12.27	20	Pass
NVHT	ax40	2422	8.35	8.39	11.38	20	Pass
NVHT	ax40	2442	8.28	8.52	11.41	20	Pass
NVHT	ax40	2462	8.15	8.07	11.12	20	Pass

Modulation: Antenna B (the worst data) Only show NVNT, b mode.


2 00.,175

8. Power Spectral Density

8.1 Block Diagram Of Test Setup

8.2 Limit

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz.

Limit	
10dBm/MHz	

8.3 Test Procedure

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

Start Frequency: 2 400 MHz

- Stop Frequency: 2 483,5 MHz
- Resolution BW: 10 kHz
- Video BW: 30 kHz

• Sweep Points: > 8 350

NOTE: For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented.

Detector: RMS

Trace Mode: Max Hold

• Sweep time: 10 s; the sweep time may be increased further until a value where the sweep time has no impact on the RMS value of the signal

For non-continuous signals, wait for the trace to stabilize.

Save the data (trace data) set to a file.

Step 2:

For conducted measurements on smart antenna systems using either operating mode 2 or operating mode 3 (see clause 5.1.3.2), repeat the measurement for each of the transmit ports. For each sampling point (frequency domain), add up the coincident power values (in mW) for the different transmit chains and use this as the new data set.

Step 3:

Add up the values for power for all the samples in the file using the formula below.

$$P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$$

with 'k' being the total number of samples and 'n' the actual sample number

Page 19 of 55

Step 4:

Normalize the individual values for power (in dBm) so that the sum is equal to the RF Output Power (e.i.r.p.) measured in clause 5.3.2 and save the corrected data. The following formulas can be used:

$$C_{Corr} = P_{Sum} - P_{e.i.r.p.}$$

$$P_{Samplecorr}(n) = P_{Sample}(n) - C_{Corr}$$

with 'n' being the actual sample number

Step 5:

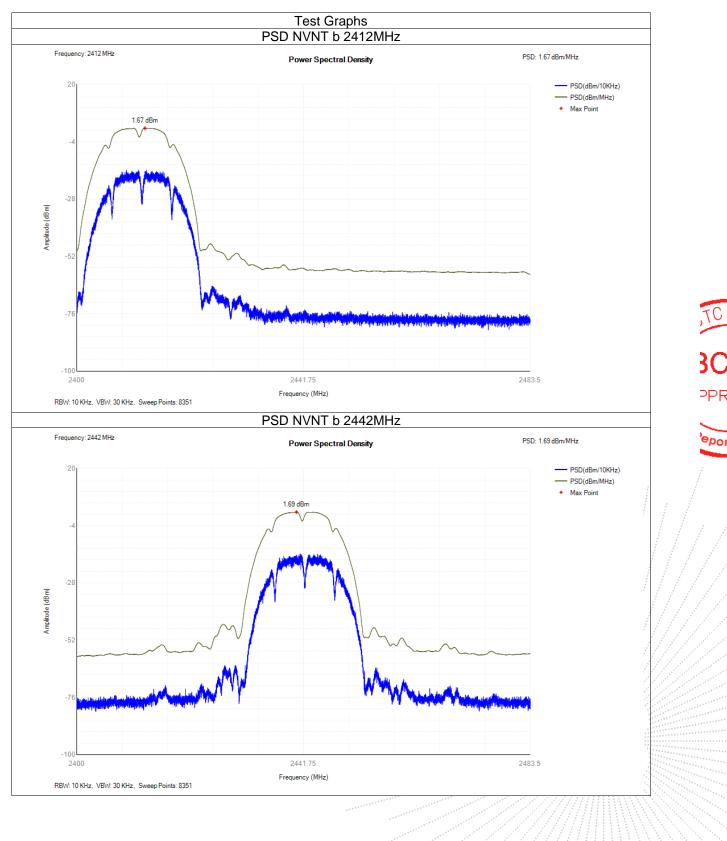
Starting from the first sample PSamplecorr(n) (lowest frequency), add up the power (in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to sample #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

Step 6:

Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to sample #101).

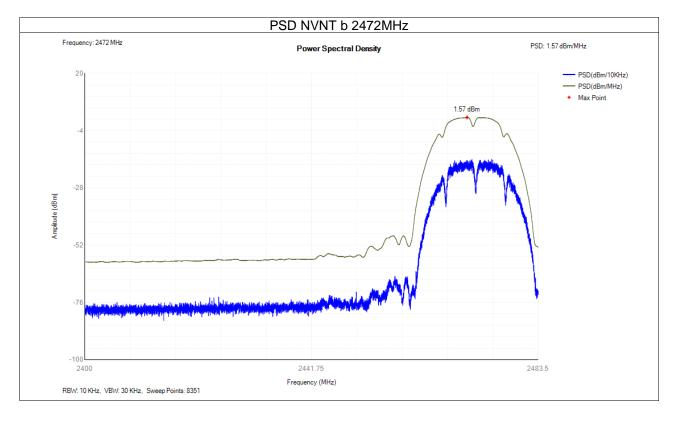
Step 7:

Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.


From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.

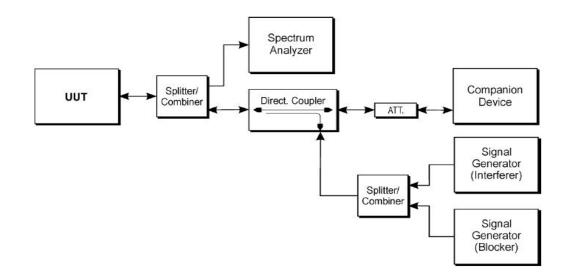
Condition	Mode	Frequency (MHz)	Max PSD (dBm/MHz) Ant A	Max PSD (dBm/MHz) Ant B	Total	Limit (dBm/MHz)	Verdict
NVNT	b	2412	1.49	1.67	/	10	Pass
NVNT	b	2442	1.67	1.69	/	10	Pass
NVNT	b	2472	1.36	1.57	/	10	Pass
NVNT	g	2412	-0.69	-0.93	/	10	Pass
NVNT	g	2442	-0.93	-0.85	./	10	Pass
NVNT	g	2472	-1.17	-1.41	7	10	Pass
NVNT	n20	2412	-1.84	-2.12	1.03	10	Pass
NVNT	n20	2442	-2.09	-1.97	0.98	10	Pass
NVNT	n20	2472	-2.36	-2.58	0.54	10	Pass
NVNT	n40	2422	-6.36	-6.22	-3.28	10	Pass
NVNT	n40	2442	-6.46	-6.26	-3.35	10	Pass
NVNT	n40	2462	-6.59	-6.58	-3.57	10	Pass
NVNT	ax20	2412	-2.09	-2.2	0.87	10	Pass
NVNT	ax20	2442	-2.24	-2.15	0.82	10	Pass
NVNT	ax20	2472	-2.52	-2.71	0.40	10	Pass
NVNT	ax40	2422	-6.6	-6.51	-3.54	10	Pass
NVNT	ax40	2442	-6.57	-6.31	-3.43	10	Pass
NVNT	ax40	2462	-6.62	-6.74	-3.67	10	Pass

8.4 Test Result



Note: A(B) Represent the value of antenna A and B, The worst data is Antenna B, only shown Antenna B Plot.(Only show NVNT, b mode)

Page 21 of 55



Page 22 of 55

9. Adaptivity

9.1 Block Diagram Of Test Setup

9.2 Limit

The frequency range of the equipment is determined by the lowest and highest

Non-LBT based Detect and Avoid: 1 The frequency shall remain unavailable for a minimum time equal to 1 second after which the channel maybe considered again as an 'available' channel; 2 COT ≤ 40 ms; 3 Idle Period = 5% of COT; <u>4 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm);</u> LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
maybe considered again as an 'available' channel; 2 COT ≤ 40 ms; 3 Idle Period = 5% of COT; <u>4 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm);</u> LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
2 COT ≤ 40 ms; 3 Idle Period = 5% of COT; <u>4 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm);</u> LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
3 Idle Period = 5% of COT; 4 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm); LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
4 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm); LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
LBT based Detect and Avoid (Frame Based Equipment): 1 Minimum Clear Channel Assessment (CCA) time = 20 us;
1 Minimum Clear Channel Assessment (CCA) time = 20 us;
2 CCA observation time declared by the supplier;
3 COT = 1~10 ms;
4 Idle Period = 5% of COT;
5 Detection threshold level = -70dBm/MHz + 20 – Pout E.I.R.P (Pout in dBm);
LBT based Detect and Avoid (Load Based Equipment):
1 Minimum Clear Channel Assessment (CCA) time = 20 us;
2 CCA declared by the manufacturer;
3 COT ≤ (13 / 32) * q ms; q = [4~32]; 1.625ms~13ms;
4 Detection threshold level = -73dBm/MHz + 20 – Pout E.I.R.P (dBm);
Short Control Signalling Transmissions:
Short Control Signalling Transmissions shall have a maximum duty cycle of 10% within an observation
period of 50ms.

Page 23 of 55

9.3 Test Procedure

Step 1:

The UUT may connect to a companion device during the test. The interference signal generator, the blocking signal generator, the spectrum analyser, the UUT and the companion device are connected using a set-up equivalent to the example given by figure 5 although the interference and blocking signal generator do not generate any signals at this point in time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interfering and the blocking signals.

Adjust the received signal level (wanted signal from the companion device) at the UUT to the value defined in table 6

The analyzer shall be set as follows:

- RBW: ≥ Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used)

VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting shall be used)
 Detector Mode: RMS

- Centre Frequency: Equal to the centre frequency of the operating channel
- Span: 0 Hz
- Sweep time: > Channel Occupancy Time of the UUT
- Trace Mode: Clear/Write
- Trigger Mode: Video

Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload to allow demonstration of compliance of the adaptive mechanism on the channel being tested

Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that the UUT complies with the maximum Channel Occupancy Time and minimum Idle Period

Step 3: Adding the interference signal

A 100 % duty cycle interference signal is injected on the current operating channel of the UUT. This interference signal shall be a band limited noise signal which has a flat power spectral density, and shall have a bandwidth greater than the Occupied Channel Bandwidth of the UUT. The maximum ripple of this interfering signal shall be $\pm 1,5$ dB within the Occupied Channel Bandwidth and the power spectral density.

Step 4: Verification of reaction to the interference signal

The spectrum analyser shall be used to monitor the transmissions of the UUT on the selected operating channel with the interfering signal injected. This may require the spectrum analyser sweep to be triggered by the start of the interfering signal.

Using the procedure defined in clause 5.3.7.2.1.4, it shall be verified that:

The UUT shall stop transmissions on the current operating channel being tested.

Apart from Short Control Signalling Transmissions (see iii) below), there shall be no subsequent transmissions on this operating channel for a (silent) period defined in clause 4.3.2.5.1.2 step 2. After that, the UUT may have normal transmissions again for the duration of a single Channel Occupancy Time period. Because the interference signal is still present, another silent period as defined in clause 4.3.2.5.1.2 step 2 needs to be included. This sequence is repeated as long as the interfering signal is present. The UUT may continue to have Short Control Signalling Transmissions on the operating channel while the interference signal is present. These transmissions shall comply with the limits Alternatively, the equipment may switch to a non-adaptive mode

Step 5: Adding the blocking signal

With the interfering signal present, a 100 % duty cycle CW signal is inserted as the blocking signal Repeat step 4 to verify that the UUT does not resume any normal transmissions

Page 24 of 55

Step 6: Removing the interference and blocking signal

On removal of the interference and blocking signal the UUT is allowed to start transmissions again on this channel however, it shall be verified that this shall only be done after the period defined in clause 4.3.2.5.1.2 step 2.

Step 7:

The steps 2 to 6 shall be repeated for each of the frequencies to be tested.

9.4 Test Result

PASS



Page 25 of 55

10. Occupied Channel Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

The Occupied Channel Bandwidth shall fall completely within the band given in 2.4GHz to 2.4835GHz. In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

10.3 Test Procedure

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %
- Video BW: 3 × RBW
- Frequency Span: 2 × Nominal Channel Bandwidth
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep time: 1 s

Step 2:

Wait for the trace to stabilize.

Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT.

This value shall be recorded.

NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.

Page 26 of 55

10.4 Test Result

ANT A											
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict			
NVNT	b	2412	2411.967	14.882	2404.526	2419.408	2400 - 2483.5MHz	Pass			
NVNT	b	2472	2471.992	14.859	2464.562	2479.421	2400 - 2483.5MHz	Pass			
NVNT	g	2412	2411.97	16.475	2403.733	2420.208	2400 - 2483.5MHz	Pass			
NVNT	g	2472	2471.975	16.477	2463.736	2480.213	2400 - 2483.5MHz	Pass			
NVNT	n20	2412	2411.957	17.648	2403.133	2420.781	2400 - 2483.5MHz	Pass			
NVNT	n20	2472	2471.96	17.634	2463.142	2480.777	2400 - 2483.5MHz	Pass			
NVNT	n40	2422	2422.012	36.354	2403.834	2440.189	2400 - 2483.5MHz	Pass			
NVNT	n40	2462	2462.003	36.328	2443.839	2480.167	2400 - 2483.5MHz	Pass			
NVNT	ax20	2412	2411.967	18.926	2402.504	2421.43	2400 - 2483.5MHz	Pass			
NVNT	ax20	2472	2471.969	18.918	2462.51	2481.428	2400 - 2483.5MHz	Pass			
NVNT	ax40	2422	2421.994	37.976	2403.006	2440.982	2400 - 2483.5MHz	Pass			
NVNT	ax40	2462	2461.991	37.895	2443.044	2480.939	2400 - 2483.5MHz	Pass			

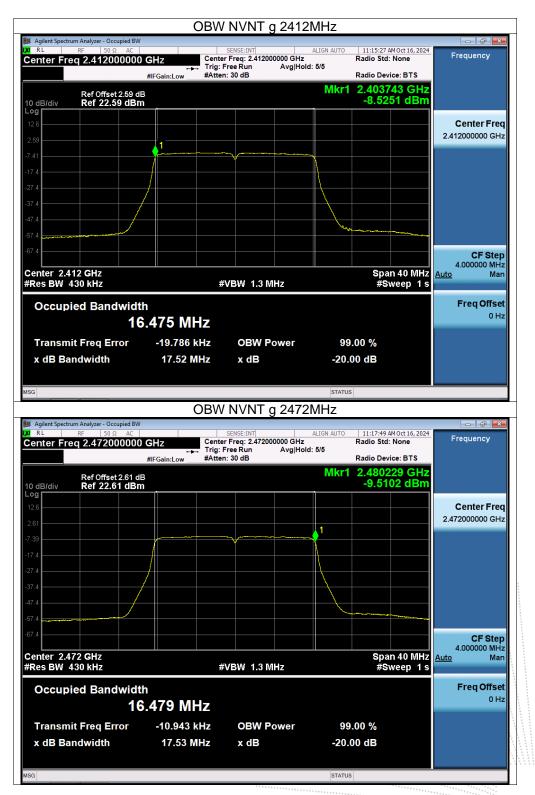
JC JC PPR

еро

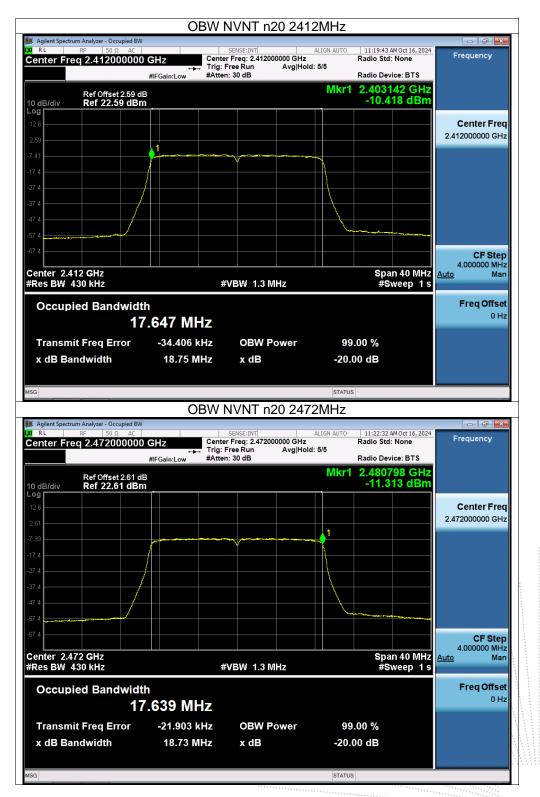
Page 27 of 55

ANT B											
Condition	Mode	Frequency (MHz)	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict			
NVNT	b	2412	2412.024	14.881	2404.584	2419.464	2400 - 2483.5MHz	Pass			
NVNT	b	2472	2472.006	14.887	2464.562	2479.449	2400 - 2483.5MHz	Pass			
NVNT	g	2412	2411.98	16.475	2403.743	2420.218	2400 - 2483.5MHz	Pass			
NVNT	g	2472	2471.989	16.479	2463.75	2480.229	2400 - 2483.5MHz	Pass			
NVNT	n20	2412	2411.966	17.647	2403.142	2420.789	2400 - 2483.5MHz	Pass			
NVNT	n20	2472	2471.978	17.639	2463.158	2480.798	2400 - 2483.5MHz	Pass			
NVNT	n40	2422	2421.999	36.42	2403.789	2440.21	2400 - 2483.5MHz	Pass			
NVNT	n40	2462	2462.023	36.368	2443.839	2480.206	2400 - 2483.5MHz	Pass			
NVNT	ax20	2412	2411.973	18.912	2402.517	2421.43	2400 - 2483.5MHz	Pass			
NVNT	ax20	2472	2471.986	18.926	2462.523	2481.449	2400 - 2483.5MHz	Pass			
NVNT	ax40	2422	2421.993	37.991	2402.997	2440.988	2400 - 2483.5MHz	Pass			
NVNT	ax40	2462	2462.017	37.936	2443.049	2480.985	2400 - 2483.5MHz	Pass			

No.: BCTC/RF-EMC-005

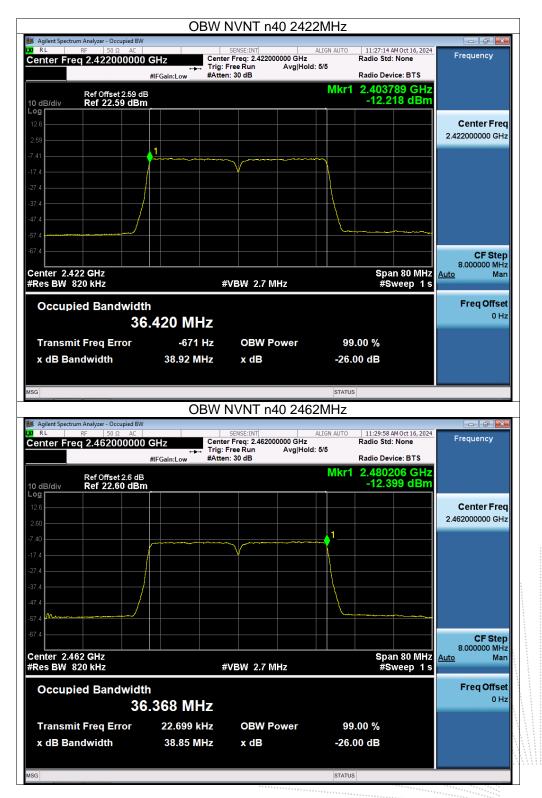

Page 28 of 55

Note: A(B) Represent the value of antenna A and B, The worst data is Antenna B, only shown Antenna B Plot.

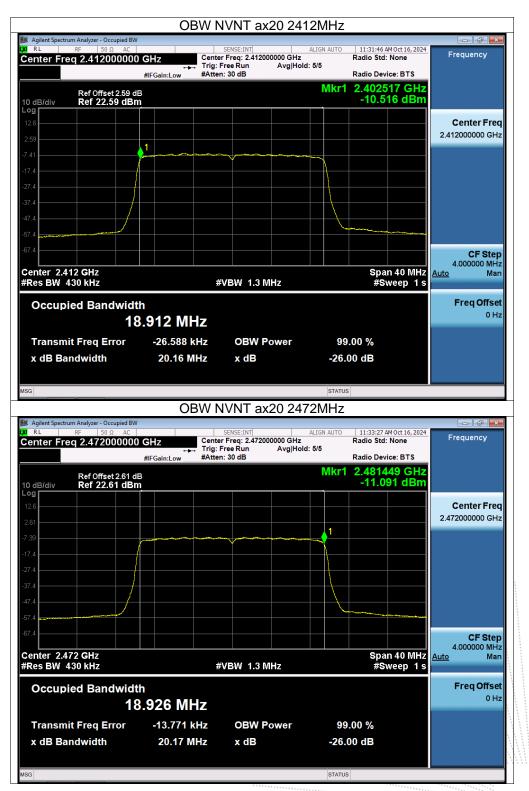


C. CO., LTA

Page 30 of 55

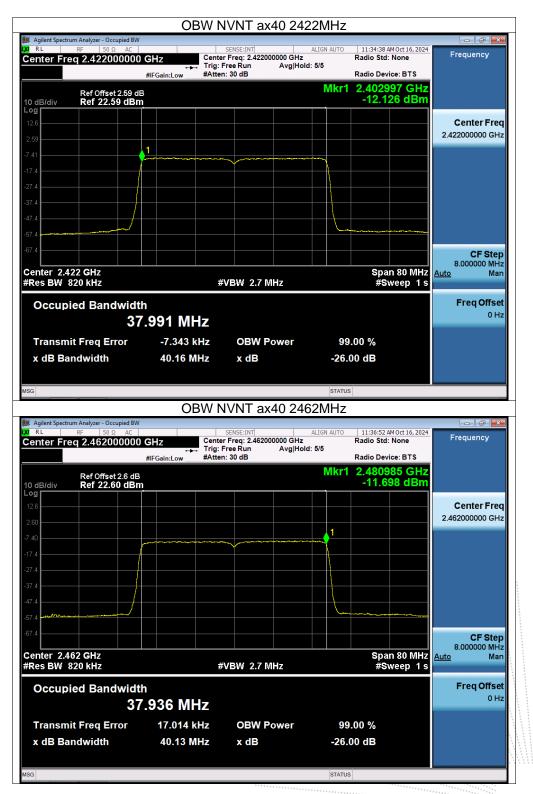


Page 31 of 55

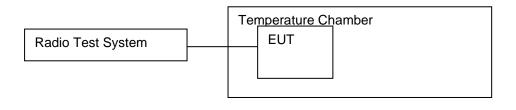


B E A

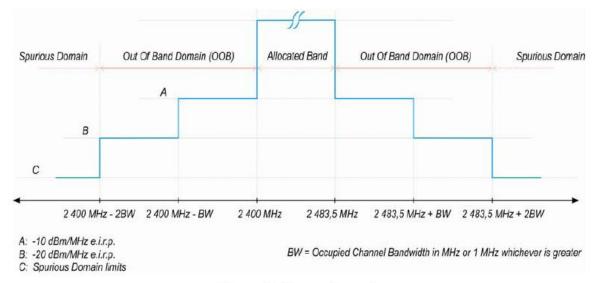
Page 32 of 55



'epoi


t Sea

Page 34 of 55



11. Transmitter Unwanted Emissions In The Out-Of-Band Domain

11.1 Block Diagram Of Test Setup

11.2 Limit

11.3 Test Procedure

The applicable mask is defined by the measurement results from the tests performed under clause 5.3.8 (Occupied Channel Bandwidth).

The test procedure is further as described under clause 5.3.9.2.1.

The Out-of-band emissions within the different horizontal segments of the mask provided in figures 1 and 3 shall be measured using the steps below. This method assumes the spectrum analyser is equipped with the Time Domain Power option.

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS

No.: BCTC/RF-EMC-005

Page 35 of 5

- Trace Mode: Max Hold

- Sweep Mode: Continuous

- Sweep Points: Sweep Time [s] / (1 μ s) or 5 000 whichever is greater

- Trigger Mode: Video trigger

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2 (segment 2 483,5 MHz to 2 483,5 MHz + BW):

• Adjust the trigger level to select the transmissions with the highest power level.

• For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

• Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

• Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

• Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3 (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW):

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 4 (segment 2 400 MHz - BW to 2 400 MHz):

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5 (segment 2 400 MHz - 2BW to 2 400 MHz - BW):

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

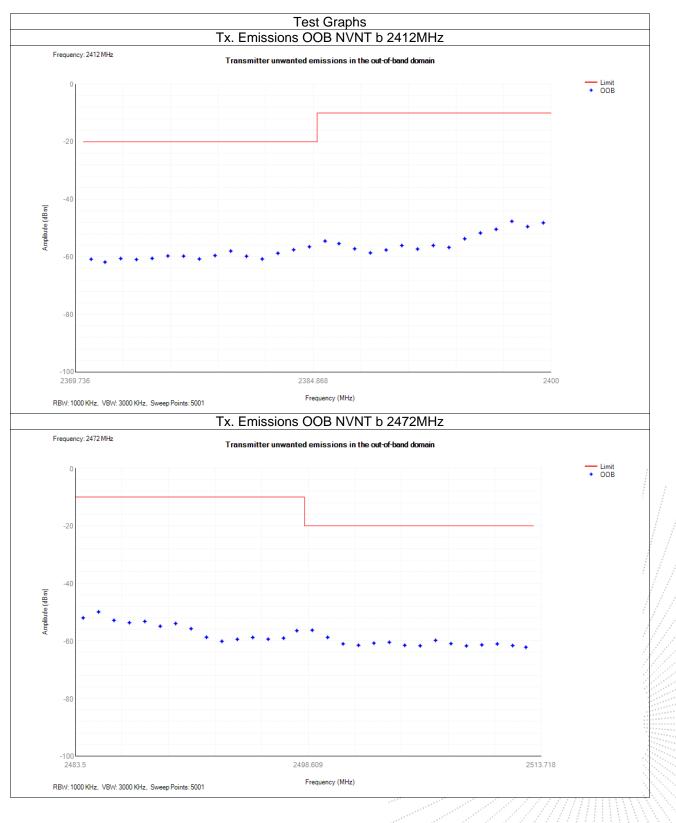
• In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figure 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

• In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

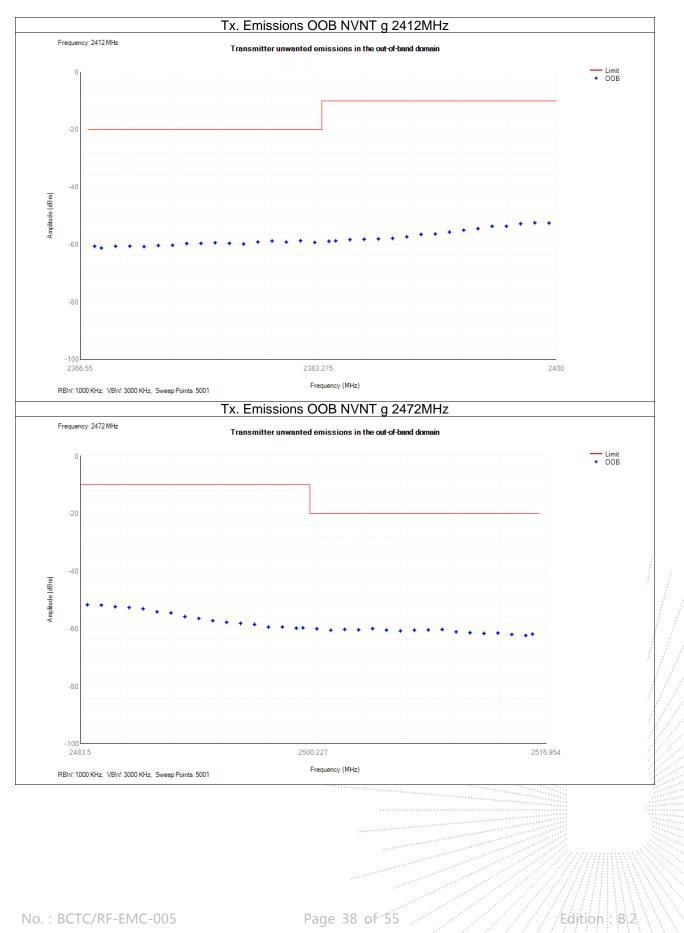
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.

- Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by

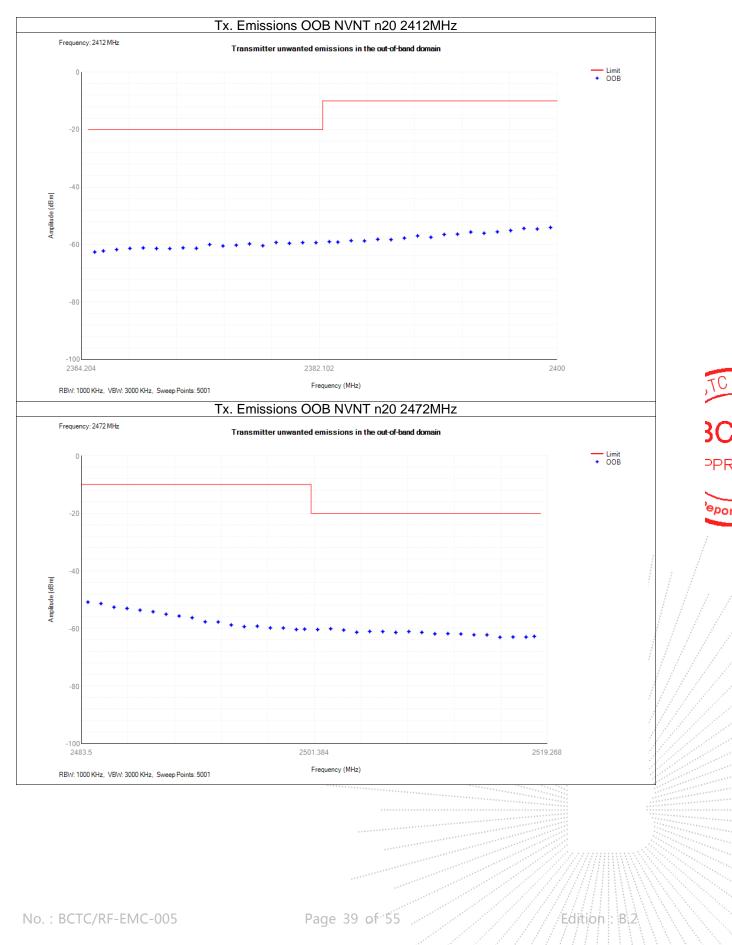
10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.


NOTE 2: Ach refers to the number of active transmit chains.

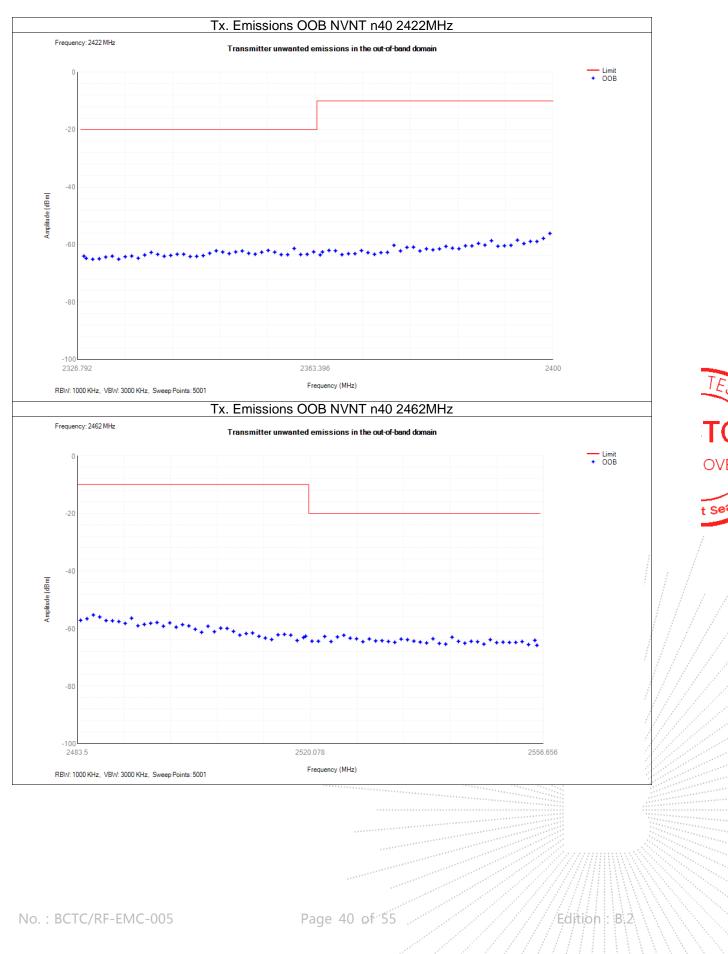
It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.

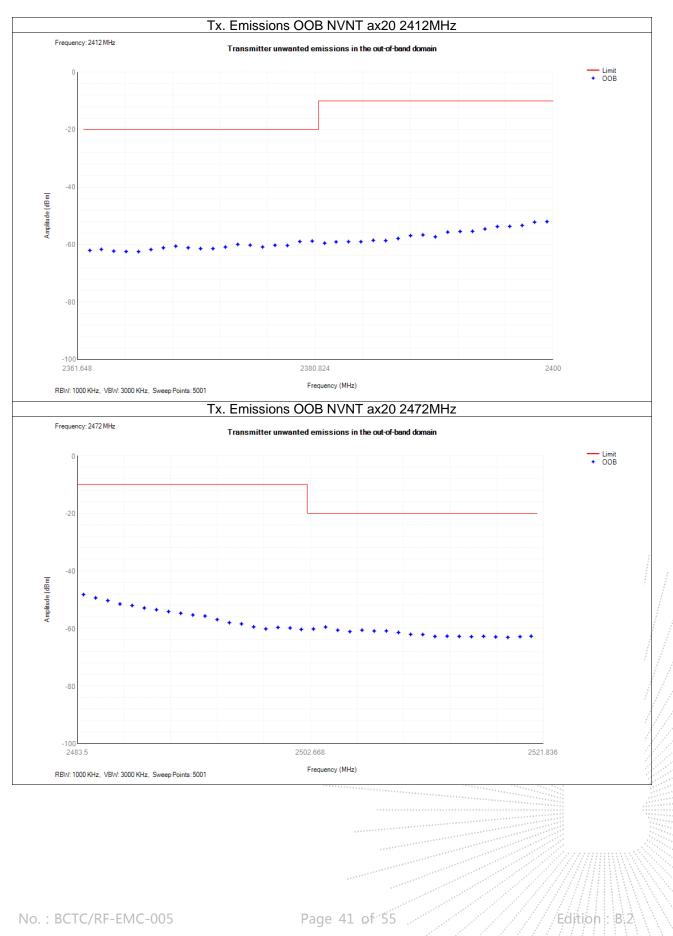

11.4 Test Result

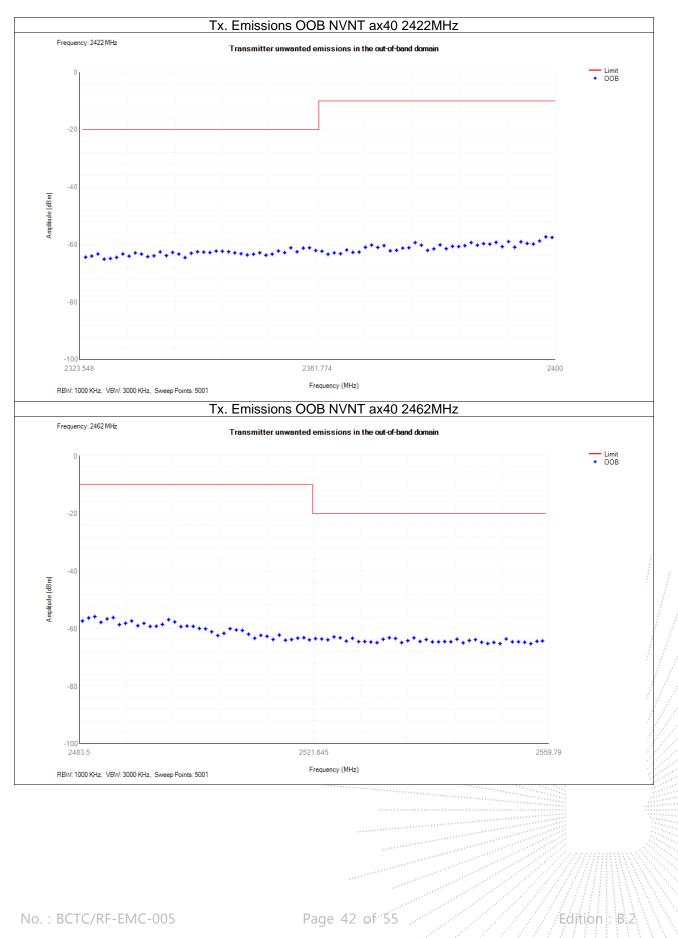
Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.



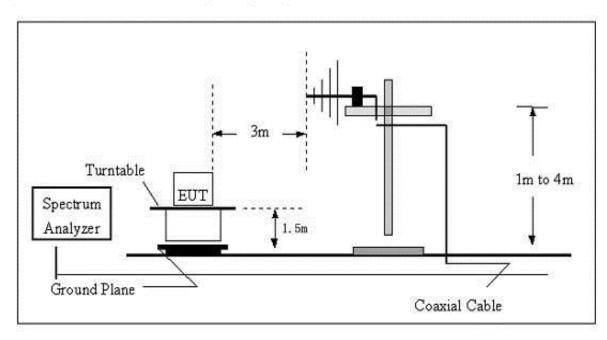
Page 37 of 55

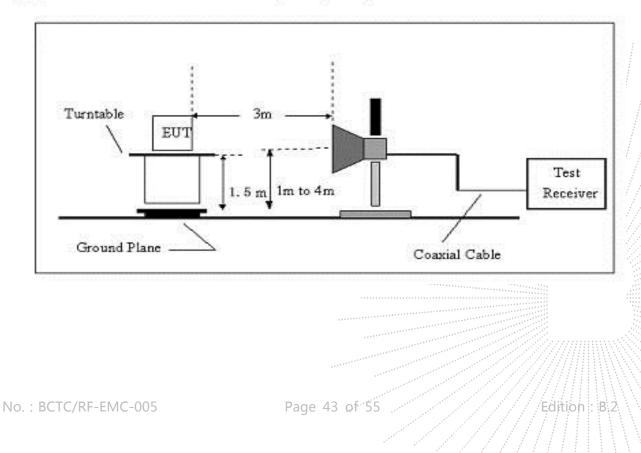






) ∋D




12. Transmitter Unwanted Emissions In The Spurious Domain

12.1 Block Diagram Of Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

12.2 Limits

Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

12.3 Test Procedure

30MHz ~ 1GHz:

a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Page 44 of 55

12.4 Test Results

All modes have been tested and reports show data in the worst mode Test Mode: 802.11g (ANT A)

_	Receiver	Turn	RX Antenna		Correct	Absolute	Result	
Frequency	Reading	table Angle	Height	Polar	Factor	Level	Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dB)	(dBm)	(dBm)	(dB)
			802.11g	low cha	annel			
531.42	-34.38	74	1.5	Н	-28.03	-62.40	-54	-8.40
531.42	-34.91	154	1.2	V	-28.03	-62.94	-54	-8.94
4824.00	-26.09	317	1.7	Н	-19.95	-46.04	-30	-16.04
4824.00	-26.42	239	1.5	V	-19.95	-46.37	-30	-16.37
7236.00	-37.53	190	1.7	Н	-14.14	-51.67	-30	-21.67
7236.00	-37.07	159	1.5	V	-14.14	-51.21	-30	-21.21
			802.11g	Mid ch	annel			
531.42	-34.15	70	1.1	Н	-28.03	-62.17	-54	-8.17
531.42	-35.68	38	1.9	V	-28.03	-63.71	-54	-9.71
4884.00	-25.63	150	1.1	Н	-19.83	-45.46	-30	-15.46
4884.00	-26.61	130	1.0	V	-19.83	-46.44	-30	-16.44
7326.00	-36.78	73	1.6	Н	-13.89	-50.67	-30	-20.67
7326.00	-37.60	293	1.8	V	-13.89	-51.49	-30	-21.49
			802.11g	high ch	nannel			
531.42	-33.44	319	1.2	Н	-28.03	-61.46	-54	-7.46
531.42	-34.66	94	1.8	V	-28.03	-62.68	-54	-8.68
4944.00	-26.42	186	1.5	Н	-19.71	-46.13	-30	-16.13
4944.00	-27.31	184	1.0	V	-19.71	-47.02	-30	-17.02
7416.00	-37.49	17	1.8	Н	-13.64	-51.13	-30	-21.13
7416.00	-37.14	134	1.7	V	-13.64	-50.78	-30	-20.78

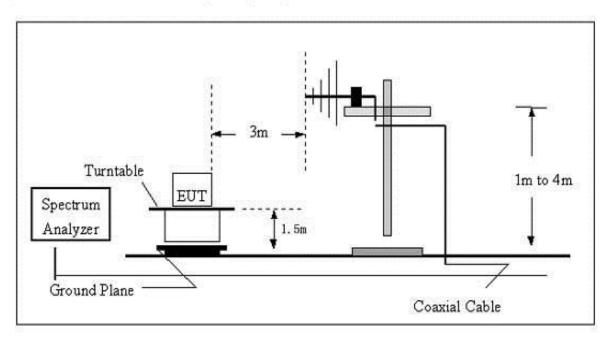
Remark:

Absolute Level = Receiver Reading + Factor Factor = Antenna Factor + Cable Loss – Pre-amplifier.

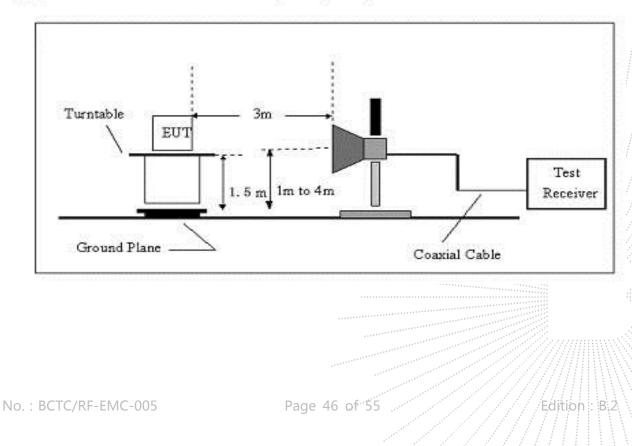
ероі

Page 45 of 55

TE,


T(

OV


t Sea

13. Receiver Spurious Emissions

- 13.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

13.2 Limits

Frequency(MHz)	Limit	Bandwidth
30-1000	-57dBm	100 kHz
1000-12750	-47dBm	1 MHz

13.3 Test Procedure

30MHz ~ 1GHz:

a. The Product was placed on the nonconductive turntable 1.5m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

a. The Product was placed on the non-conductive turntable 1.5 m above the ground in a full anechoic chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Page 47 of 55

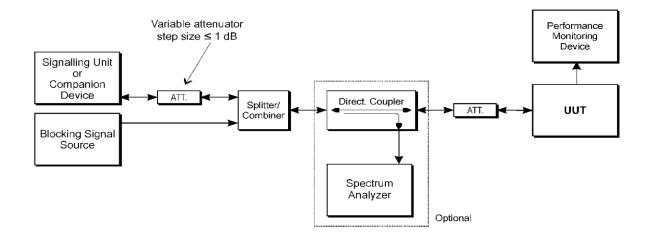
13.4 Test Results

All modes have been tested and reports show data in the worst mode Test Mode: 802.11g (ANT A) $\,$

_	Receiver	Turn	RX Antenna		Correct	Absolute	Result	
Frequency	Reading	table Angle	Height	Polar	Factor	Level	Limit	Margin
(MHz)	(dBm)	Degree	(m)	(H/V)	(dB)	(dBm)	(dBm)	(dB)
			802.11g	low cha	annel			
342.44	-36.85	62	1.5	Н	-28.80	-65.65	-57.00	-8.65
342.44	-36.08	176	1.1	V	-28.80	-64.88	-57.00	-7.88
3070.20	-38.85	281	1.3	Н	-23.46	-62.31	-47.00	-15.31
3070.20	-34.67	95	1.1	V	-23.46	-58.13	-47.00	-11.13
			802.11g	Mid ch	annel			
342.44	-37.08	71	1.8	Н	-28.80	-65.88	-57.00	-8.88
342.44	-36.03	124	1.7	V	-28.80	-64.82	-57.00	-7.82
3070.20	-39.08	19	1.4	Н	-23.46	-62.54	-47.00	-15.54
3070.20	-34.20	42	1.1	V	-23.46	-57.66	-47.00	-10.66
			802.11g	high c	hannel			
342.44	-38.62	339	1.8	Н	-28.80	-67.42	-57.00	-10.42
342.44	-35.11	22	2.0	V	-28.80	-63.91	-57.00	-6.91
3070.20	-38.96	95	1.9	Н	-23.46	-62.42	-47.00	-15.42
3070.20	-34.70	207	1.2	V	-23.46	-58.16	-47.00	-11.16

Remark:

Absolute Level = Receiver Reading + Factor


Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 48 of 55

14. Receiver Blocking

14.1 Block Diagram Of Test Setup

14.2 Limit

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

from cor	d signal mean power mpanion device (dBm) ee notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
	m + 10 × log ₁₀ (OCBW)) dBm whichever is less (see note 2)	2 380 2 504		
	m + 10 × log ₁₀ (OCBW)) dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	cw
	OCBW is in Hz. In case of radiated meas the wanted signal from the test may be performed un the minimum level of war	he companion de sing a wanted sig	vice cannot be de gnal up to P _{min} + 2	termined, a relative 26 dB where P _{min} is
NOTE 3:	criteria as defined in clau	use 4.3.1.12.3 in t surements using a he companion de	the absence of an a companion devi vice cannot be de	y blocking signal. ce and the level of termined, a relative

the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
 NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

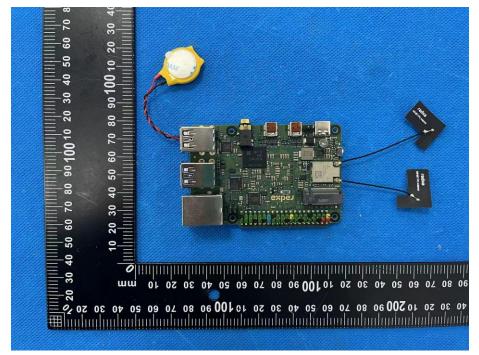
14.3 Test Procedure

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11.2.

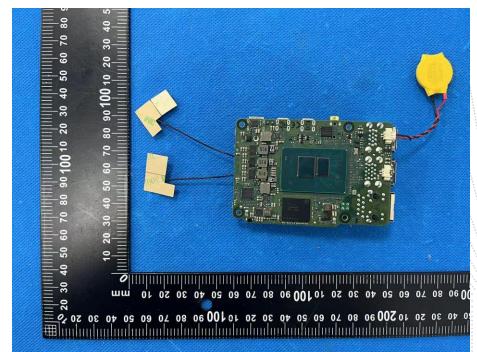
14.4 Test Result

All modes have been tested and reports show data in the worst mode Test Mode: 802.11ax40 (ANT B)

Receiver Category 1						
802.11AX 40	P _{min} (dBm)	Blocking Frequency (MHz)	Blocking Power(dBm)	Measured PER(%)	Limit (%)	
2412	-68	2380	-34	3.07	10	
2412	-74	2300	-34	4.04	10	
2412	-74	2330	-34	6.21	10	
2412	-74	2360	-34	1.35	10	
2472	-68	2504	-34	4.91	10	
2472	-74	2524	-34	1.39	10	
2472	-74	2584	-34	6.72	10	
2472	-74	2674	-34	5.95	10	

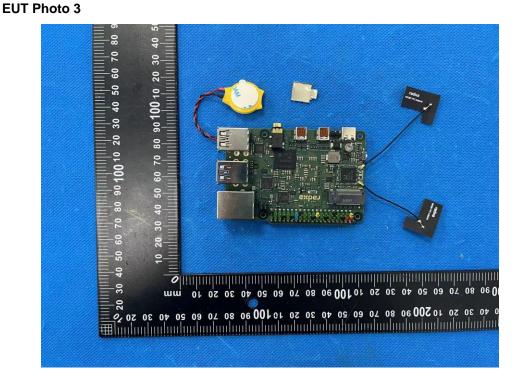

OCBW=37991000Hz (-133dBm+10*log10(OCBW))=-57.20dBm -68dBm≤-57.20dBm Wanted Signal Power=-68dBm (-139dBm+10*log10(OCBW))=-63.20dBm -74dBm≤-63.20dBm Wanted Signal Power=-74dBm

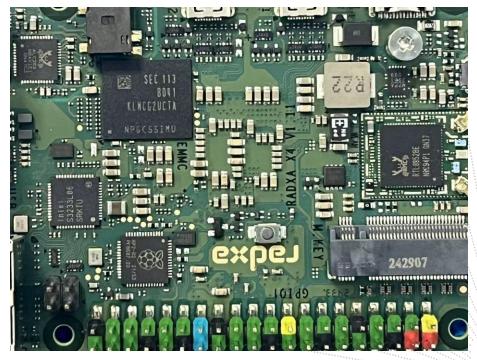
Page 50 of 55



15. EUT Photographs

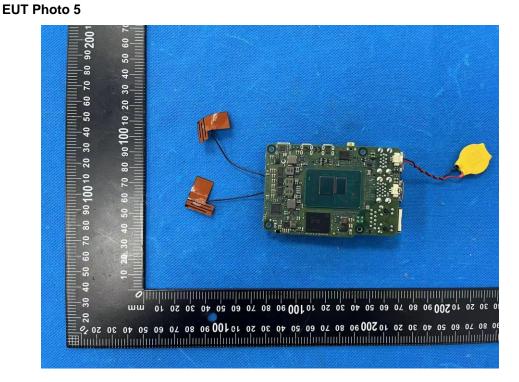
EUT Photo 1


EUT Photo 2


Rep

Page 51 of 55

EUT Photo 4



ort

No. : BCTC/RF-EMC-005

Page 52 of 55

EUT Photo 6

No. : BCTC/RF-EMC-005

ES

-C

VE

16. EUT Test Setup Photographs

Spurious emissions

Page 54 of 55

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No. : BCTC/RF-EMC-005

Page 55 of 55