

TEST REPORT

Report No.: BCTC2410830549-2E

Applicant: Radxa Computer (Shenzhen) Co.,Ltd.

Product Name: Radxa ZERO 3W

Test Model: Radxa ZERO 3W D1E0H1W15

Tested Date: 2024-10-10 to 2024-11-15

Issued Date: 2024-11-15

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005 Page: 1 of 56 / / Edition: B.2

Model/Type reference:

Report No.: BCTC2410830549-2E

Product Name: Radxa ZERO 3W

Trademark:

Radxa ZERO 3W D1E0H1W15

Radxa ZERO 3W D1E0H0W15, Radxa ZERO 3W D2E0H0W15, Radxa ZERO 3W D4E0H0W15, Radxa ZERO 3W D8E0H0W15, Radxa ZERO 3W D4E0H1W15, Radxa ZERO 3W D4E0H1W15, Radxa ZERO 3W D1E8H0W15, Radxa ZERO 3W D1E8H0W15,

Radxa ZERO 3W D2E16H0W15, Radxa ZERO 3W D4E32H0W15, Radxa ZERO 3W D8E64H0W15, Radxa ZERO 3W D1E8H1W15, Radxa ZERO 3W D2E16H1W15, Radxa ZERO 3W D4E32H1W15,

Radxa ZERO 3W D8E64H1W15

Prepared For: Radxa Computer (Shenzhen) Co.,Ltd.

Address: 1602, Smart Valley, tiezai Road, Gongle community, Xixiang, Baoan, Shenzhen,

China

Manufacturer: Radxa Computer (Shenzhen) Co.,Ltd.

Address: 1602, Smart Valley, tiezai Road, Gongle community, Xixiang, Baoan, Shenzhen,

China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng,

Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2024-10-10

Sample tested Date: 2024-10-10 to 2024-11-15

Issue Date: 2024-11-15

Report No.: BCTC2410830549-2E

Test Standards: Article 2 paragraph 1 of item 19

MIC Notice No.88 Appendix No.43

Test Results: PASS

Remark: This is JAPAN RADIO test report.

Tested by:

Lei Chen

Lei Chen/Project Handler

Approved by:

1

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005 Page: 2 of 56 / / / Edition: B.2

Table Of Content

rest	Report Declaration	Page	
1.	Version		5
2.	Test Summary		6
3.	Measurement Uncertainty		7
4.	Product Information And Test Setup		
4.1	Product Information		
4.2	Block Digram Parameters Of Text Software Setting		8
4.3	Description Of Support Units (Conducted Mode)		
4.4	Channel List		
4.5	Test Mode		
4.6	Test Conditions		9
4.7	Table Of Parameters Of Test Software Setting		10
5.	Test Facility And Test Instrument Used		
5.1	Test Facility		
5.2	Test Instrument Used		
6.	RF Shielding Method		
7.	Frequency Error		13
7.1	Block Diagram Of Test Setup		
7.2	Limit		
7.3	Measuring Instruments And Setting		
7.4	Test Procedure		
7.5	Test Result		14
8.	Antenna Power	<u> </u>	16
8.1	Block Diagram Of Test Setup		
8.2	Limit		
8.3	Test Procedure		
8.4	Test Result		16
9.	Occupied Bandwith		17
9.1	Block Diagram Of Test Setup		17
9.2	Limit	1.1.1.1.4.4	17
9.3	Test Procedure	.1.1.1.///	17
9.4	Test Result		17
10.	Unwanted Emission Intensity Measurement		24
10.1	Block Diagram Of Test Setup		24
10.2	Limit		24
10.3	Measuring Instruments And Setting		24
10.4	Test Procedure		24
10.5	Measuring Instruments And Setting Test Procedure Test Result		25
11.	Imitation Of Collateral Emission Of Receiver Measurement		41
11.1	Block Diagram Of Test Setup		41
11.2	Block Diagram Of Test SetupLimit		41
11.3	Measuring Instruments And Setting	4.1.1.1.1.1.1.	41
11.4	Test Procedure	4.4.4.4.4.	41.
11.5	Test Result		42

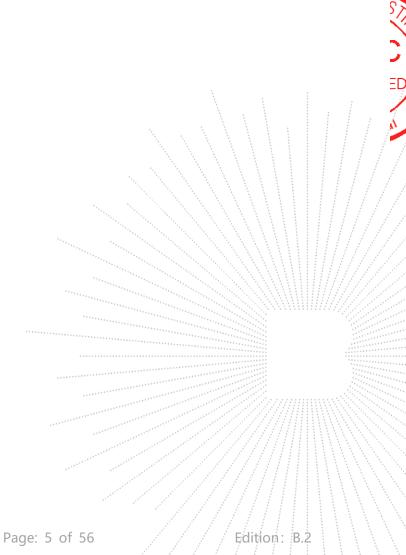
,TC

3C

epo

12. Transmission Antenna Gain (EIRP Antenna Power) Measurement	49
12.1 Block Diagram Of Test Setup	49
12.2 Limit	
12.3 Measuring Instruments And Setting	50
12.4 Test Procedure	50
12.5 Test Result	50
13. Transmission Radiation Angle Width (3db Beamwidth) Measurement	51
13.1 Block Diagram Of Test Setup	51
13.2 Limit	51
13.3 Measuring Instruments And Setting	51
13.4 Test Procedure	52
13.5 Test Result	52
14. Radio Interference Prevention Capability Measurement	
14.1 Block Diagram Of Test Setup	53
14.2 Limit	53
14.3 Measuring Instruments And Setting	53
14.4 Test Procedure	53
14.5 Test Result	53
15. EUT Photographs	54
16. EUT Test Setup Photographs	55

(Note: N/A Means Not Applicable)


No.: BCTC/RF-EMC-005

1. Version

Report No.	Issue Date	Description	Approved
BCTC2410830549-2E	2024-11-15	Original	Valid

No.: BCTC/RF-EMC-005 Page: 5 of

2. Test Summary

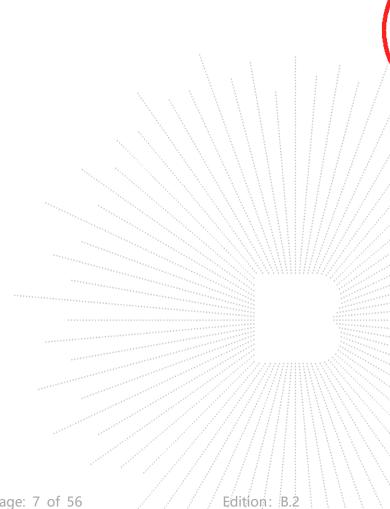
Test procedures according to the technical standards:

Article 2 paragraph 1 of item 19				
Description of Test	Result			
Frequency Error	Complies			
Occupied Bandwidth (99%) and Spread-spectrum Bandwidth (90%)	Complies			
Unwanted Emission Intensity	Complies			
Antenna Power Error	Complies			
Limitation of Collateral Emission of Receiver	Complies			
Transmission Antenna Gain (EIRP Antenna Power)	N/A			
Transmission Radiation Angle Width (3dB Beamwidth)	N/A			
Radio Interference Prevention Capability	Complies			
Construction Protection Confirmation	Complies			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

No.: BCTC/RF-EMC-005 Page: 6 of 56 // Edition: B.2



3. Measurement Uncertainty

Report No.: BCTC2410830549-2E

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	Radiated Emission Test	±4.7dB
3	RF power, conducted	±0.16dB
4	Spurious emissions, conducted	±0.21dB
5	All emissions, radiated(<1G)	±4.68dB
6	All emissions, radiated(>1G)	±5.0dB
7	frequency error ppm	±0.5ppm

No.: BCTC/RF-EMC-005 Page: 7 of 56 / / Edițion: B.7

4. Product Information And Test Setup

4.1 Product Information

Radxa ZERO 3W D1E0H1W15

Radxa ZERO 3W D1E0H0W15, Radxa ZERO 3W D2E0H0W15, Radxa ZERO 3W D4E0H0W15, Radxa ZERO 3W D8E0H0W15, Radxa ZERO 3W D2E0H1W15, Radxa ZERO 3W D4E0H1W15, Radxa ZERO 3W D4E0H1W15, Radxa ZERO 3W D4E0H1W15

Report No.: BCTC2410830549-2E

Model/Type reference: Radxa ZERO 3W D8E0H1W15, Radxa ZERO 3W D1E8H0W15,

Radxa ZERO 3W D2E16H0W15, Radxa ZERO 3W D4E32H0W15, Radxa ZERO 3W D8E64H0W15, Radxa ZERO 3W D1E8H1W15, Radxa ZERO 3W D2E16H1W15, Radxa ZERO 3W D4E32H1W15,

Radxa ZERO 3W D8E64H1W15

Model differences:

All the model are the same circuit and RF module, except model names and

appearance of the color.

Hardware Version: V1.11 Software Version: b6

Operation Frequency: 2402-2480MHz

Type of Modulation: GFSK (1Mbps, 2Mbps)

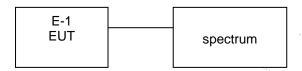
Number Of Channel: 40 CH

Antenna installation: Chip antenna

1.5 dBi Remark:

Antenna Gain:

The antenna gain of the product comes from the antenna report provided by the


customer, and the test data is affected by the customer information.

☐ The antenna gain of the product is provided by the customer, and the test data

is affected by the customer information.

Ratings: DC 5V

4.2 Block Digram Parameters Of Text Software Setting

4.3 Description Of Support Units (Conducted Mode)

Item	Equipment	Mfr/B	rand	Model/Type No.	Series No. Note
E-1	Radxa ZERO 3W	rad	X 3 [®]	Radxa ZERO 3W D1E0H1W15	N/A EUT

Notes:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in Length column
- 3. "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

No.: BCTC/RF-EMC-005 Page: 8 of 56 / / / Edition: B.2

4.4 Channel List

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2402	11	2422	21	2442	
02	2404	12	2424	22	2444	
03	2406	13	2426	23	2446	
~	~	~	~	~	~	
09	2418	19	2438	39	2478	
	1					

Report No.: BCTC2410830549-2E

2480

40

4.5 Test Mode

10

2420

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

2440

20

For All Mode	Description	Modulation Type
Mode 1	CH01	
Mode 2	CH20	GFSK 1Mbps
Mode 3	CH40	
Mode 4	CH01	
Mode 5	CH20	GFSK 2Mbps
Mode 6	CH40	
Mode 7	RX	GFSK

4.6 Test Conditions

The EUT was tested while in a continuous transmitter/receiver mode.

The EUT was tuned to a low, middle, and high channel for all tests. For all test case pre/scans were completed in all Modes to determine worst case levels.

Power Supply Voltage Fluctuation Test

Voltage Fluctuation Test	Normal Voltage	High Voltage +10% of Normal Voltage	Low Voltage -10% of Normal Voltage
Input DC Power	5V	5.5V	4,5V
Voltage Variation (%)	0%	+10%	-10%

Note:

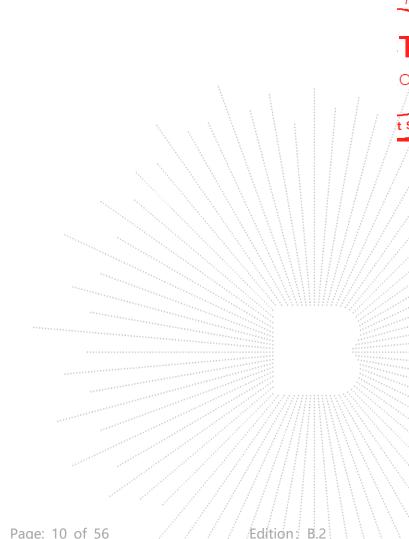
Voltage Variation (%)= (Output high or Low Voltage - Output Normal Voltage* 100

During the input supply voltage to the EUT from the external power source is varied by $\pm 10\%$, $\pm 10\%$ of the external power change, will not affect the voltage of the RF, so only operated in normal voltage to test all regulations.

No.: BCTC/RF-EMC-005 Page: 9 of 56 / / / Edition: B.2

,TC

3C


еро

4.7 Table Of Parameters Of Test Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD				
Frequency	2402 MHz	2440 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

No.: BCTC/RF-EMC-005 Page: 10 of 56 / / Edition

Report No.: BCTC2410830549-2E **Test Facility And Test Instrument Used**

5.

5.1 **Test Facility**

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212

ISED Registered No.: 23583 ISED CAB identifier: CN0017

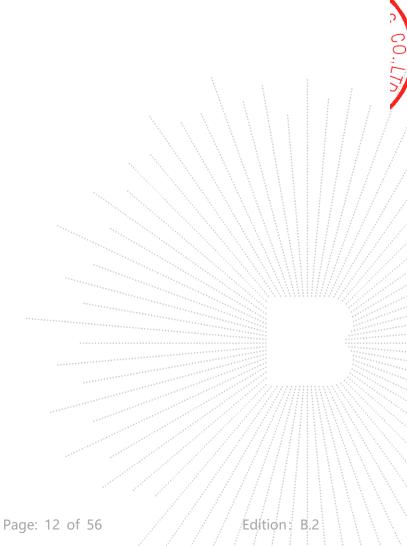
5.2 Test Instrument Used

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1.	Power Metter	Keysight	E4419	\	May 16, 2024	May 15, 2025
2.	Signal Analyzer 20kHz-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025
3.	Signal Generator	Keysight	N5182B	MY56200519	May 16, 2024	May 15, 2025
4	Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 16, 2024	May 15, 2025
5	Hygrothermograph	Thermo	HTC-1	\	Nov. 13, 2023	Nov. 12, 2024

Calibration laboratory: CCIC(Shenzhen) Co., Ltd

Page: 11 of 56 Edition: B.2 No.: BCTC/RF-EMC-005

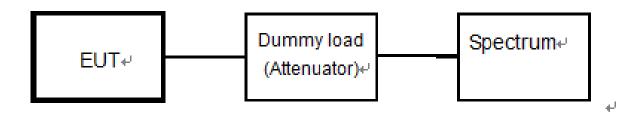
6. RF Shielding Method


Report No.: BCTC2410830549-2E

Chipset:

The product structure is uses SMD patch process.
As shown in the picture, If the will be open so the product be damage.

Number of the pins: 48 interval distance 0.5mm


No.: BCTC/RF-EMC-005 Page: 12 of 56

Frequency Error

Report No.: BCTC2410830549-2E

7.1 Block Diagram Of Test Setup

7.2 Limit

Item	Limits
Frequency Error	±50ppm

7.3 Measuring Instruments And Setting

The following table is the setting of Spectrum Analyzer.

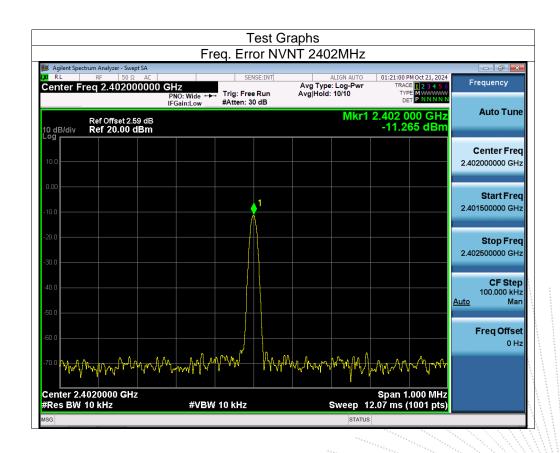
Spectrum Parameter	Setting			
Attenuation	Auto			
RB / VB	10KHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

7.4 Test Procedure

- (1) In the case of unmodulated signal (continuous or continuous burst), measure the frequency directly by a frequency meter.
- (2) In the case of burst waves, the measurement shall be done for enough time in order to obtain the enough measuring accuracy, and the average of the measured values becomes the final value.
- (3) In the case of a test mode with a specific frequency spectrum, measure the frequency of the specific spectrum by a spectrum analyzer.
- (4) In the cases above, if the frequency equivalent to the test frequency is not directly measured in principle, it shall be obtained by necessary calculation.

In the case of modulated signal, if there is no specific spectrum measurable by a spectrum analyzer but a specific dip is observed, it is allowed to measure the frequency with the signal generator (synthesized). That is, observe a signal of the signal generator concurrently (or alternately) with the tested signal using the spectrum analyzer while setting the frequency of the signal generator to the position of the dip on the screen of the spectrum analyzer, and determine the frequency of the signal generator at the time as a measured value.

No.: BCTC/RF-EMC-005 Page: 13 of 56 / / / Edition: B.2

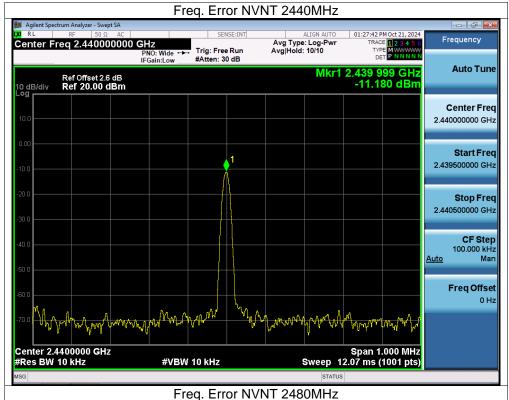


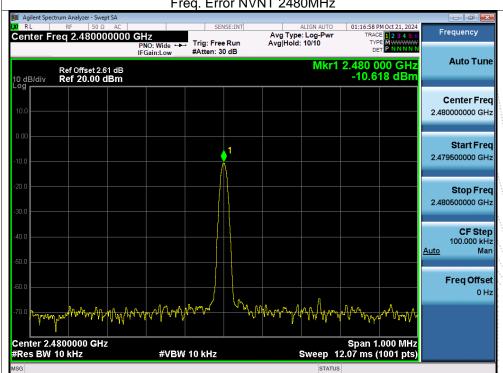
7.5 Test Result

Report No.: BCTC2410830549-2E

Temperature:	25°C		
Humidity:	55 % RH	Test Voltage	DC 5V

Condition	Frequency (MHz)	Measured Frequency (MHz)	Frequency Error (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
NVNT	2402	2402	0	0	50	Pass
NVNT	2440	2439.999	-1000	-0.41	50	Pass
NVNT	2480	2480	0	0	50	Pass



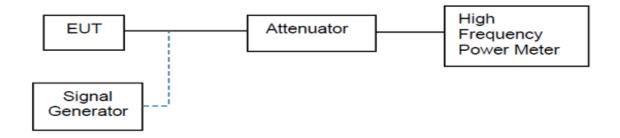

No.: BCTC/RF-EMC-005 Page: 14 of 56 / / Edition: B.2

No.: BCTC/RF-EMC-005

Report No.: BCTC2410830549-2E

Page: 15 of 56

/ Edition: B.2


ерог

8. Antenna Power

Report No.: BCTC2410830549-2E

8.1 Block Diagram Of Test Setup

8.2 Limit

Item	Limits
	(1)≦3mW/MHz (FH,FH+DS,FH+OFDM form 2400 - 2483.5 MHz)
Antonio Bourn Bouriti	(2)≦10mW/MHz (OFDM OBW < 26MHz, DS, FH other than (1))
Antenna Power Density	(3)≦5mW/MHz (OFDM OBW 26-38MHz)
	(4) ≦10mW (Other than (1) & (2)& (3)
Antenna Power Error	+20%, -80% (Base on manufacturer declare antenna power density)

8.3 Test Procedure

- 1: Measure the total power by Power Meter in a state of hopping mode or non-hopping mode (with Average Sensor)
- 2: If it's the burst wave, please measure the burst ratio. Then calculate the real total power by burst ratio.
- 3: Calculate the mean power.

Output Power Density (mW) = Total Output Power (mW) / Duty cycle

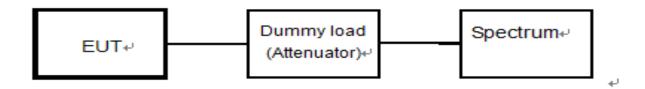
8.4 Test Result

Temperature:	25°C	The second secon					
Humidity:	55 % RH	Test Voltage	DC 5	5V			

Condi- tion	Mode	Fre- quency (MHz)	Power (dBm)	Antenna Power (mW)	Limit (Mw)	Declared Power (mW)	Tolerance (%)	Limit (%)	Verdict
NVNT	BLE 1M	2402	1.06	1.28	10	2	-36	-80~20	Pass
NVNT	BLE 1M	2440	1.13	1.30	10	2		-80~20	Pass
NVNT	BLE 1M	2480	1.57	1.44	10	2	-28	-80~20	Pass
NVNT	BLE 2M	2402	1.02	1.26	10	2	-37	-80~20	Pass
NVNT	BLE 2M	2440	1.09	1.29	10	2	-36	-80~20	Pass
NVNT	BLE 2M	2480	1.52	1.42	10	2	-29	-80~20	Pass

No.: BCTC/RF-EMC-005 Page: 16 of 56 / / / Edition: B.2

TE


OVE

9. Occupied Bandwith

Report No.: BCTC2410830549-2E

9.1 Block Diagram Of Test Setup

9.2 Limit

Item	Limits
Occupied Band Width:	FH 83.5MHz; OFDM,DS ≦26MHz;Others≦26MHz
Spreading Bandwidth:	≥500 kHz (FH, DS)

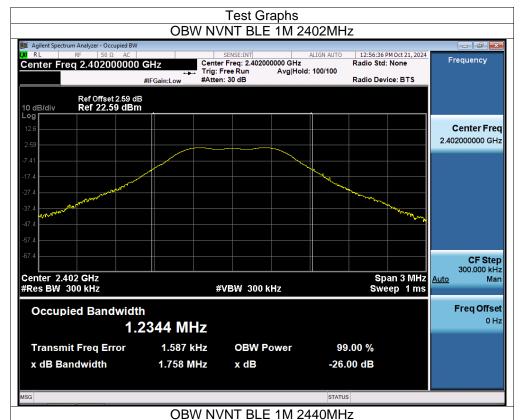
9.3 Test Procedure

1. Setting of SA is following as: RB: 300kHz / VB:300kHz / SPAN: 3MHz / AT: 20dB Ref: 10dBm / Sweep time: Auto / Sweep Mode: Continuous sweep / Detect mode: Positive peak / Trace mode: Max hold 2. EUT have transmitted the maximum modulation signal and fixed channelize (For DSSS or OFDM Device) or continuous maximum power of hopping mode (For FHSS Device).

SA set to 99% of occupied bandwidth to measure occupied bandwidth. The limit is less than 26MHz (For DSSS or OFDM Device) or 83.5MHz (For FHSS Device).

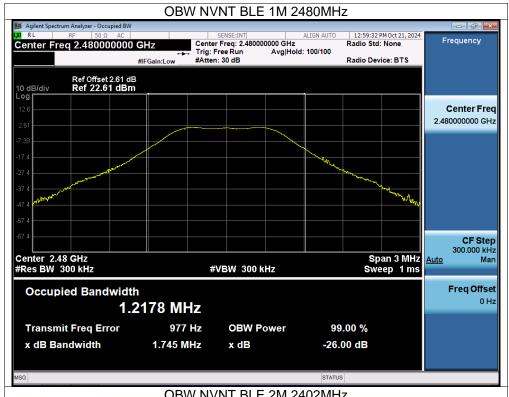
- 3. SA set to 90% of occupied bandwidth to measure Spread Spectrum Bandwidth and must greater than 500kHz.
- 4. Spread Spectrum Factor = Spread Spectrum Bandwidth / modulation rate of EUT.
- 5. Spread Spectrum Factor limit is greater than 5

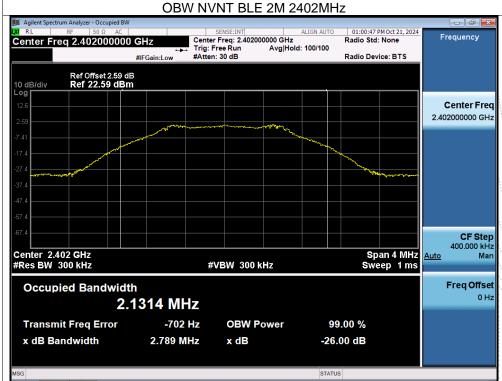
9.4 Test Result


	25ºC					
Humidity:	55 % RH	Test Voltage	DC 5V			

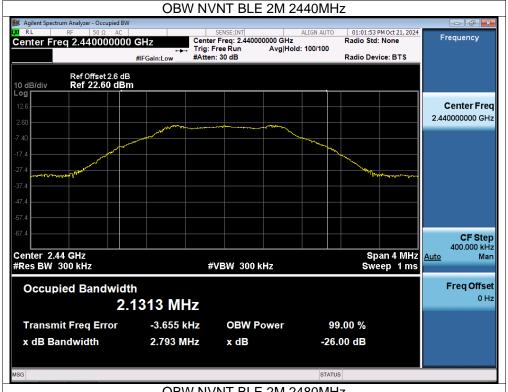
Condition	Mode	Frequency (MHz)	99% OBW (MHz)	90% OBW (MHz)	Limit (MHz)	Verdict
NVNT	BLE 1M	2402	1.234	0.828	0.5	Pass
NVNT	BLE 1M	2440	1.227	0.826	0.5	Pass
NVNT	BLE 1M	2480	1.218	0.825	0.5	Pass
NVNT	BLE 2M	2402	2.131	1.381	0.5	Pass
NVNT	BLE 2M	2440	2.131	1:38	0.5	Pass
NVNT	BLE 2M	2480	2.13	1.382	0.5	Pass

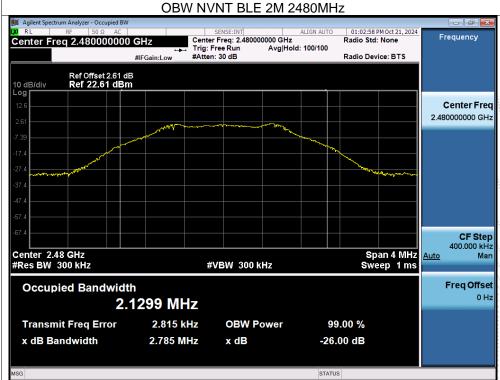
No.: BCTC/RF-EMC-005 Page: 17 of 56 / / / Edition: B.2

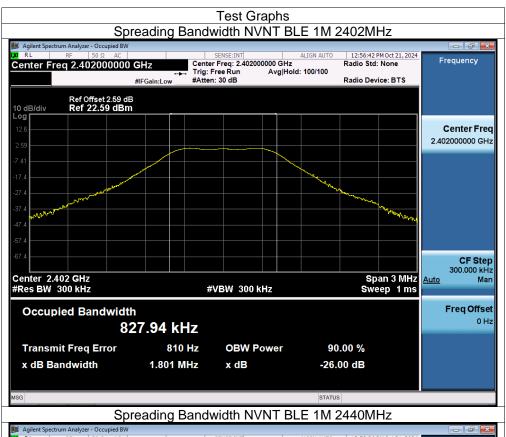




No.: BCTC/RF-EMC-005 Page: 18 of 56 / / / Edition; B.2

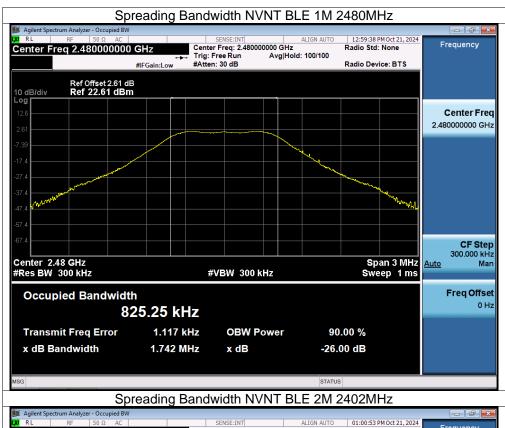


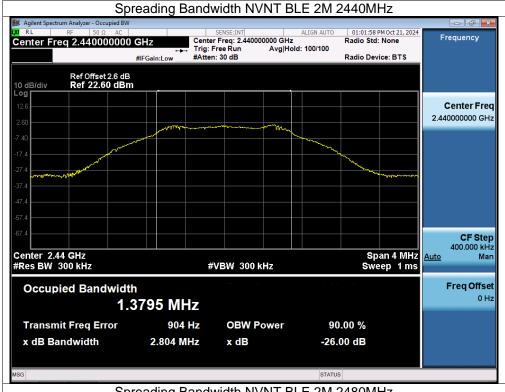


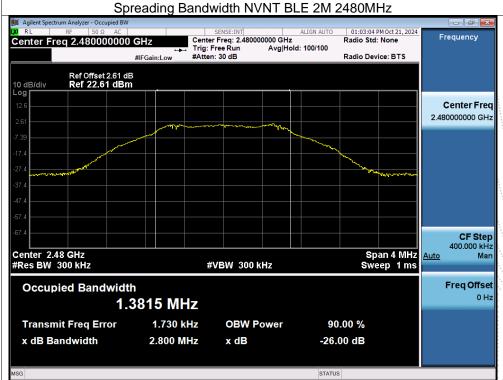

No.: BCTC/RF-EMC-005 Page: 19 of 56 / / / Edition: B.2



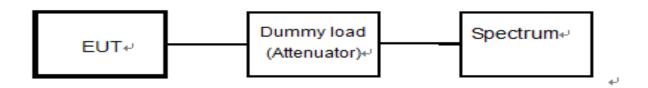
No.: BCTC/RF-EMC-005 Page: 20 of 56 / / / Edition: B.2


No.: BCTC/RF-EMC-005 Page: 21 of 56 / / / Edition: B.2





No.: BCTC/RF-EMC-005 Page: 22 of 56 / / / Edition: B.2


No.: BCTC/RF-EMC-005 Page: 23 of 56 / / / Edition: B.2

10. Unwanted Emission Intensity Measurement

10.1 Block Diagram Of Test Setup

Report No.: BCTC2410830549-2E

10.2 Limit

Item	RB / VB	Limits
TX Spurious Emission	100KHz	$\leq 0.25 \mu\text{W} (-36 dBm) (30 MHz \leq f \leq 1000 MHz)$
	1 MHz	≦2.5 μW (-26dBm (1000MHz <f≦2387mhz)< td=""></f≦2387mhz)<>
	1 MHz	≦25 μW (-16dBm (2387MHz <f≦2400mhz)< td=""></f≦2400mhz)<>
	1 MHz	≦25 μW (-16dBm (2483.5MHz≦f<2496.5MHz)
	1 MHz	≤2.5 μW (-26dBm (2496.5MHz≤f<12500MHz)

10.3 Measuring Instruments And Setting

Please refer to section 5 in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
RB / VB	1 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

10.4 Test Procedure

- 1. EUT have transmitted the maximum modulation signal and fixed channelize.
- 2. Setting of SA is following as: Below 1GHz RB:100KHz / VB:100KHz

Above 1GHz RB:1MHz / VB:1MHz / AT: 20dB Ref: 10dBm / Sweep time: Auto

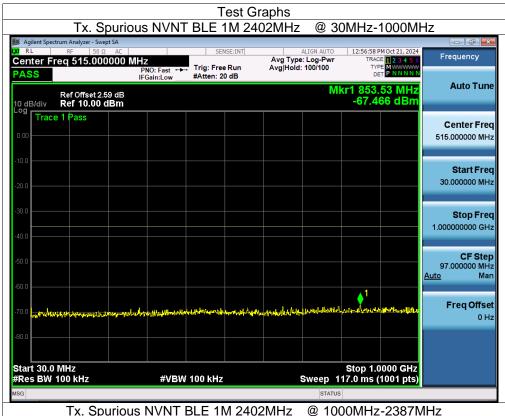
Sweep Mode: Continuous sweep / Detect mode: Positive peak

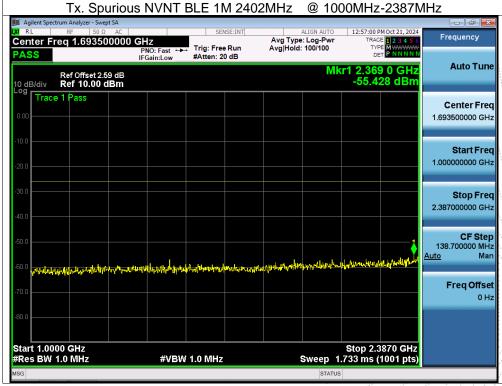
Trace mode: Max hold

- 3. Setting of SA is following as 30MHz and stop frequency 1000MHz Then to mark peak reading value + cable loss shall be less than 0.25µW.
- 4. Setting of SA is following as 1000MHz and stop frequency 2387MHz Then to mark peak reading value + cable loss shall be less than $2.5\mu W$.
- 5. SA adjusted to start frequency 2387MHz and stop frequency 2400MHz. Then to mark peak reading value + cable loss shall be less than 25µW.
- 6. SA adjusted to start frequency 2483.5MHz and stop frequency 2496.5MHz. Then to mark peak reading value + cable loss shall be less than 25µW
- 7. SA adjusted to start frequency 2496.5MHz and stop frequency 12500MHz Then to mark peak reading value + cable loss shall be less than $2.5\mu W$

No.: BCTC/RF-EMC-005 Page: 24 of 56 / / / Edition: B.2

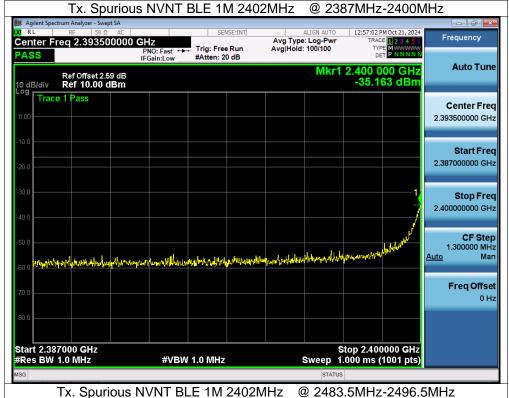
10.5 Test Result

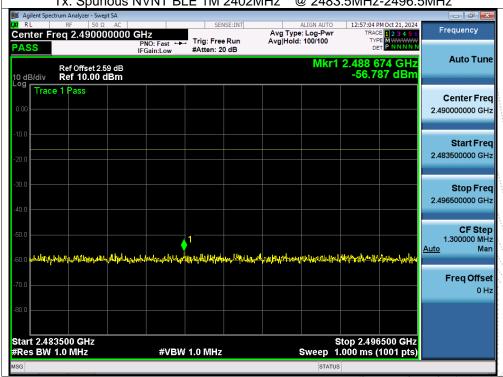

Report No.: BCTC2410830549-2E


Temperature:	25°C		
Humidity:	55 % RH	Test Voltage	DC 5V

Condi- tion	Mode	Fre- quency (MHz)	Range (MHz)	Emission Frequency (MHz)	Max Value (dBm)	Limit Start (dBm)	Limit Stop (dBm)	Verdict
NVNT	BLE 1M	2402	30-1000	853.53	-67.47	-36	-36	Pass
NVNT	BLE 1M	2402	1000-2387	2368.97	-55.43	-26	-26	Pass
NVNT	BLE 1M	2402	2387-2400	2400	-35.16	-16	-16	Pass
NVNT	BLE 1M	2402	2483.5-2496.5	2488.67	-56.79	-16	-16	Pass
NVNT	BLE 1M	2402	2496.5-13000	5174.89	-49.82	-26	-26	Pass
NVNT	BLE 1M	2440	30-1000	909.79	-66.77	-36	-36	Pass
NVNT	BLE 1M	2440	1000-2387	2301.01	-55.79	-26	-26	Pass
NVNT	BLE 1M	2440	2387-2400	2399.4	-55.81	-16	-16	Pass
NVNT	BLE 1M	2440	2483.5-2496.5	2486.98	-55.08	-16	-16	Pass
NVNT	BLE 1M	2440	2496.5-13000	5258.92	-42.67	-26	-26	Pass
NVNT	BLE 1M	2480	30-1000	31.94	-65.91	-36	-36	Pass
NVNT	BLE 1M	2480	1000-2387	2341.23	-56.12	-26	-26	Pass
NVNT	BLE 1M	2480	2387-2400	2393.44	-57.03	-16	-16	Pass
NVNT	BLE 1M	2480	2483.5-2496.5	2483.66	-51.28	-16	-16	Pass
NVNT	BLE 1M	2480	2496.5-13000	5174.89	-49.18	-26	-26	Pass
NVNT	BLE 2M	2402	30-1000	31.94	-64.93	-36	-36	Pass
NVNT	BLE 2M	2402	1000-2387	2385.61	-53.3	-26	-26	Pass
NVNT	BLE 2M	2402	2387-2400	2399.99	-21.79	-16	-16	Pass
NVNT	BLE 2M	2402	2483.5-2496.5	2494.65	-56.21	, -16 _i	-16	Pass
NVNT	BLE 2M	2402	2496.5-13000	5258.92	-39.24	-26	-26	Pass
NVNT	BLE 2M	2440	30-1000	31.94	-64.41	-36	-36	Pass
NVNT	BLE 2M	2440	1000-2387	2299.62	-55.92	-26	-26	Pass
NVNT	BLE 2M	2440	2387-2400	2396.26	-56.03	-16	-16	Pass
NVNT	BLE 2M	2440	2483.5-2496.5	2488.38	-55.35	-16	-16	Pass
NVNT	BLE 2M	2440	2496.5-13000	5195.9	-48.52	-26	-26	Pass
NVNT	BLE 2M	2480	30-1000	31.94	-62.93	-36	-36	Pass
NVNT	BLE 2M	2480	1000-2387	2292.68	-56.45	-26	-26	Pass
NVNT	BLE 2M	2480	2387-2400	2388.18	-56.91	-16	-16	Pass
NVNT	BLE 2M	2480	2483.5-2496.5	2483.59	-49.71	-16	-16	Pass
NVNT	BLE 2M	2480	2496.5-13000	5258.92	-44.43	-26	-26	Pass

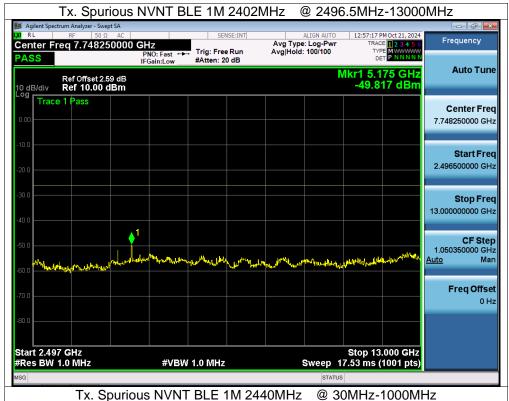
No.: BCTC/RF-EMC-005 Page: 25 of 56 / Edition B.2



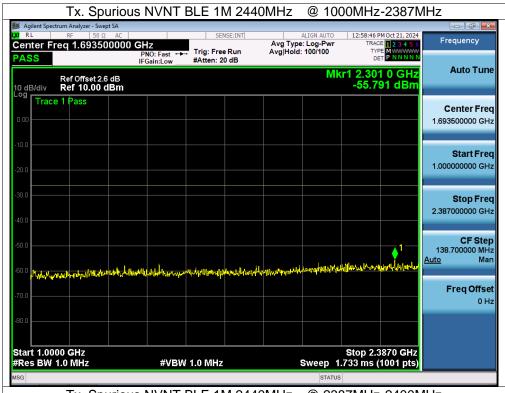


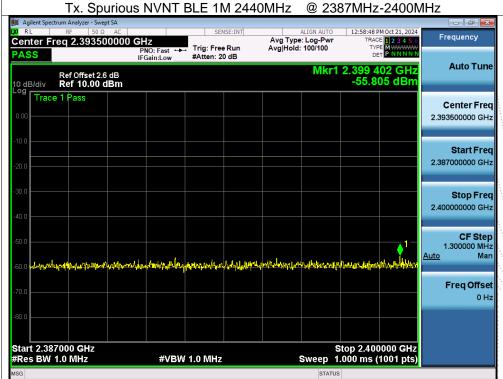
No.: BCTC/RF-EMC-005 Page: 26 of 56 / / / Edition: B.2

epoi



No.: BCTC/RF-EMC-005 Page: 27 of 56 / / / Edition: B.2


t se

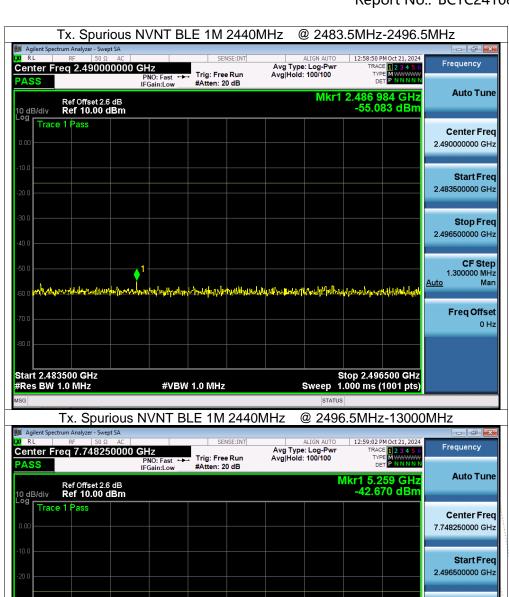


No.: BCTC/RF-EMC-005 Page: 28 of 56 / / / Edition: B.2

No.: BCTC/RF-EMC-005 Page: 29 of 56 / / / Edition: B.2

Start 2.497 GHz #Res BW 1.0 MHz Report No.: BCTC2410830549-2E

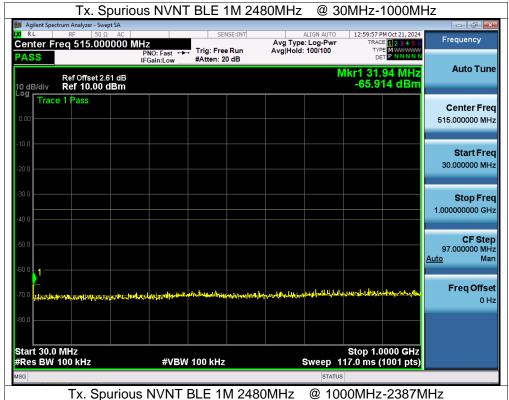
Stop Freq 13.000000000 GHz

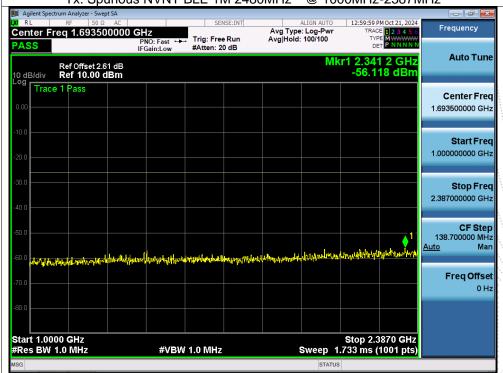

Man

CF Step 1.050350000 GHz

Freq Offset

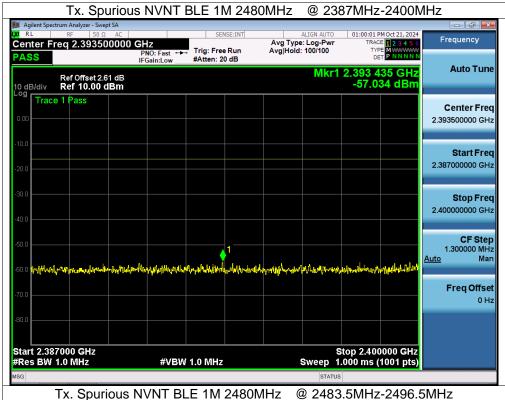
<u>Auto</u>

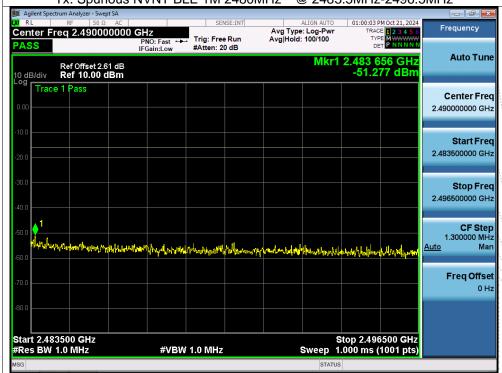

Stop 13.000 GHz Sweep 17.53 ms (1001 pts)



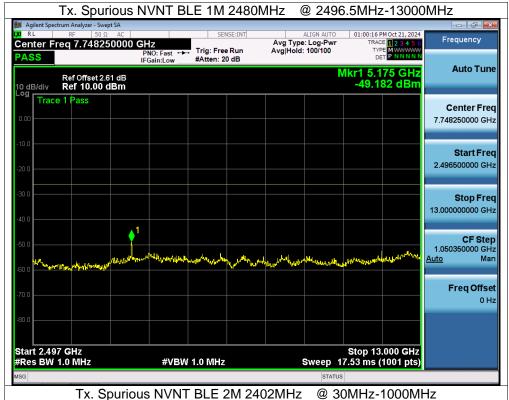
No.: BCTC/RF-EMC-005 Page: 30 of 56 / / Ædition: B.2

#VBW 1.0 MHz





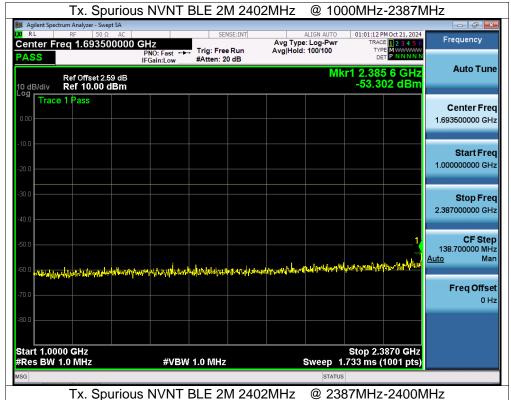
No.: BCTC/RF-EMC-005 Page: 31 of 56 / / / Edition: B.2

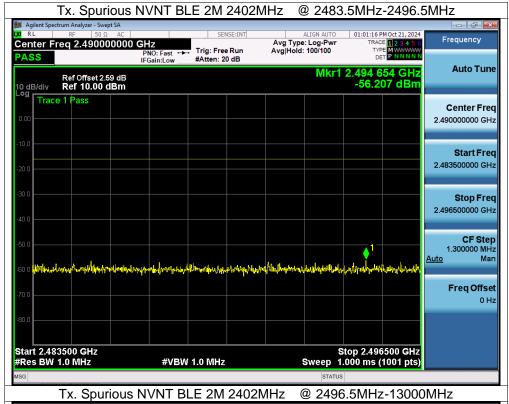




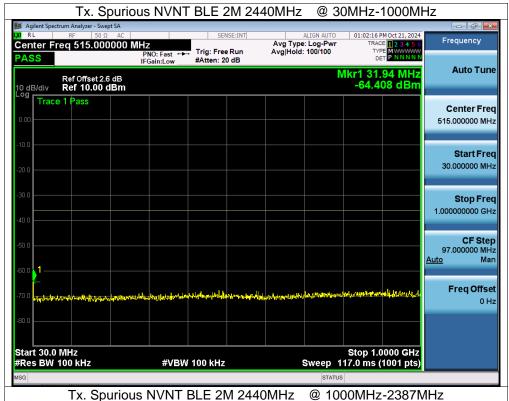
No.: BCTC/RF-EMC-005 Page: 32 of 56 / / / Edition: B.2

No.: BCTC/RF-EMC-005 Page: 33 of 56 / / / Edition: B.2

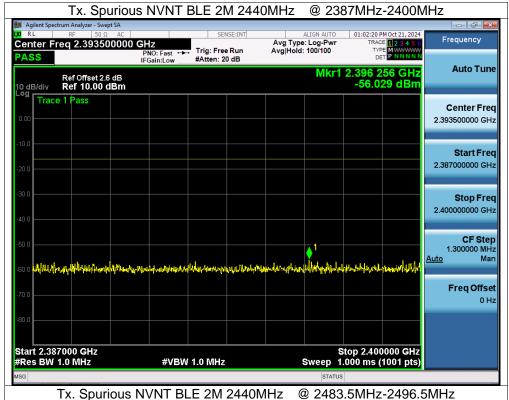



t se

No.: BCTC/RF-EMC-005 Page: 34 of 56 / / / Ædition: B.2

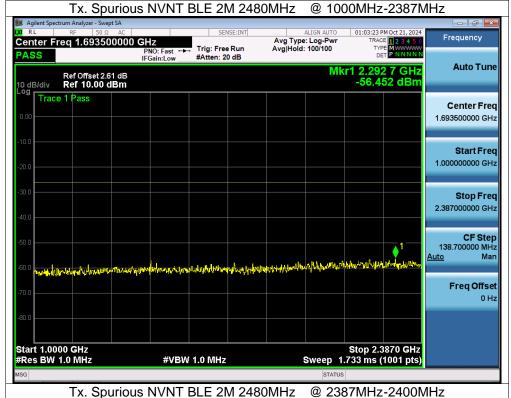


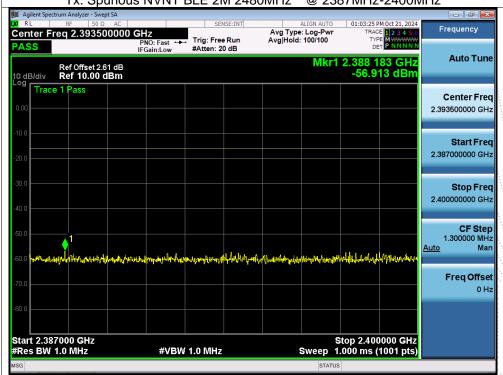
No.: BCTC/RF-EMC-005 Page: 35 of 56 / / / Edition: B.2



No.: BCTC/RF-EMC-005 Page: 36 of 56 / / / Edition: B.2

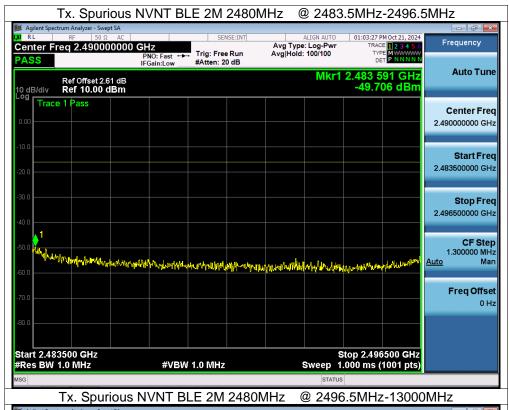
No.: BCTC/RF-EMC-005 Page: 37 of 56 / / / Edition: B.2





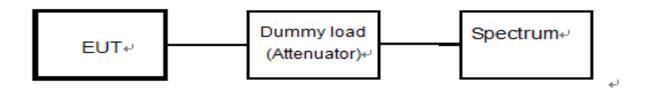
No.: BCTC/RF-EMC-005 Page: 38 of 56 / / / Edition: B.2

No.: BCTC/RF-EMC-005 Page: 39 of 56 / / / Edition: B.2





t se



No.: BCTC/RF-EMC-005 Page: 40 of 56 / / / Edition: B.2

11. Imitation Of Collateral Emission Of Receiver Measurement

11.1 Block Diagram Of Test Setup

11.2 Limit

Item	Limits
RX Spurious	≤4nW (-54dBm) (f<1GHz)
Emission:	\leq 20nW (-47dBm) (1GHz \leq f)

11.3 Measuring Instruments And Setting

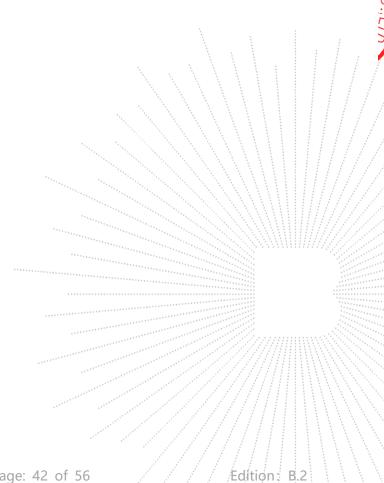
Please refer to section 5 in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
RB	100 kHz (below 1GHz emissions) 1 MHz (above 1GHz emissions)		
VB	100 kHz (below 1GHz emissions) 1 MHz (above 1GHz emissions)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

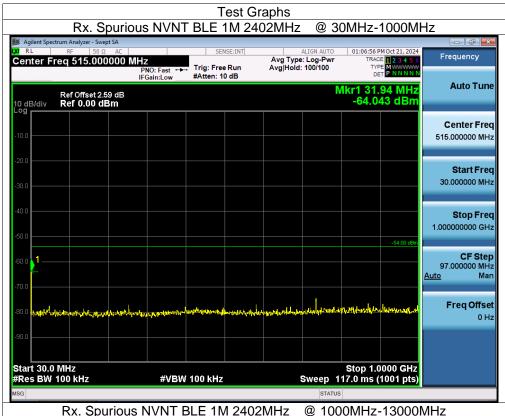
11.4 Test Procedure

- 1. EUT have the continuous reception mode and fixed only one channelize.
- 2. Setting of SA is following as RB / VB: 100 kHz (below 1GHz emissions) / 1 MHz (above 1GHz emissions) /AT: 6dB / Ref: -20dBm / Sweep time: Auto / Sweep Mode: Continuous sweep / Detect mode: Positive peak / Trace mode: Max hold
- 3. SA set RB: 100kHz and VB: 100kHz. Then adjust to start frequency 30MHz and stop frequency 1000MHz. Search to mark peak reading value + cable loss shall be less than 4nW
- 4. SA set RB: 1MHz and VB: 1MHz. Then adjust to start frequency 1000MHz and stop frequency 12500MHz. Search to mark peak reading value + cable loss shall be less than 20nW
- 5. If power level of lower emissions are more than 1/10 of limit (.0.4nW for f < 1GHz, 2nW for f >= 1GHz), all those are to be indicated in the 2nd and 3rd lines. If others are 1/10 or less more of the limit, no necessary to be indicated.

No.: BCTC/RF-EMC-005 Page: 41 of 56 / Edition: B.2

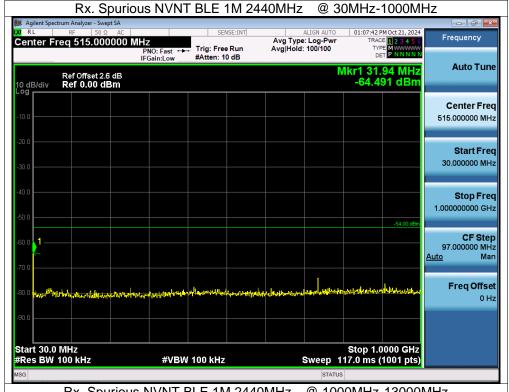


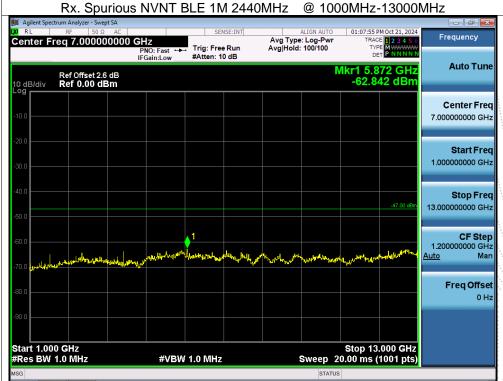
11.5 Test Result


Report No.: BCTC2410830549-2E

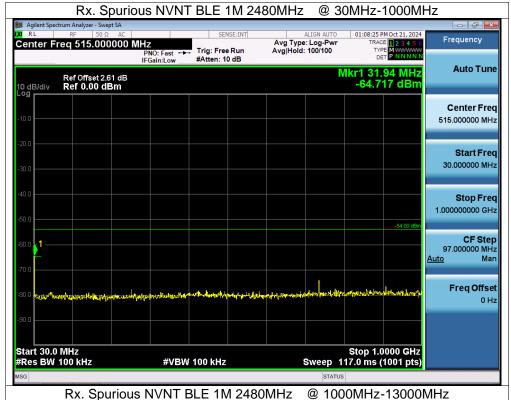
	25°C		
Humidity:	55 % RH	Test Voltage	DC 5V

Condition	Mode	Frequency (MHz)	Range (MHz)	Emission Frequency (MHz)	Max Value (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	30-1000	31.94	-64.04	-54	Pass
NVNT	BLE 1M	2402	1000-13000	2440	-57.99	-47	Pass
NVNT	BLE 1M	2440	30-1000	31.94	-64.49	-54	Pass
NVNT	BLE 1M	2440	1000-13000	5872	-62.84	-47	Pass
NVNT	BLE 1M	2480	30-1000	31.94	-64.72	-54	Pass
NVNT	BLE 1M	2480	1000-13000	5668	-63.05	-47	Pass
NVNT	BLE 2M	2402	30-1000	31.94	-64.81	-54	Pass
NVNT	BLE 2M	2402	1000-13000	12724	-62.79	-47	Pass
NVNT	BLE 2M	2440	30-1000	31.94	-64.9	-54	Pass
NVNT	BLE 2M	2440	1000-13000	12736	-62.95	-47	Pass
NVNT	BLE 2M	2480	30-1000	31.94	-64.89	-54	Pass
NVNT	BLE 2M	2480	1000-13000	12652	-63.04	-47	Pass


No.: BCTC/RF-EMC-005 Page: 42 of 56 / Edition: B.2

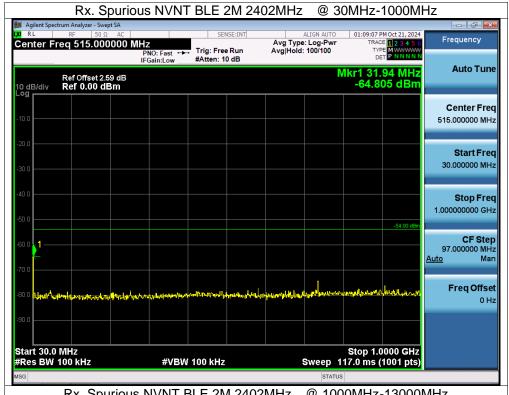


No.: BCTC/RF-EMC-005 Page: 43 of 56 / / / Edition: B.2

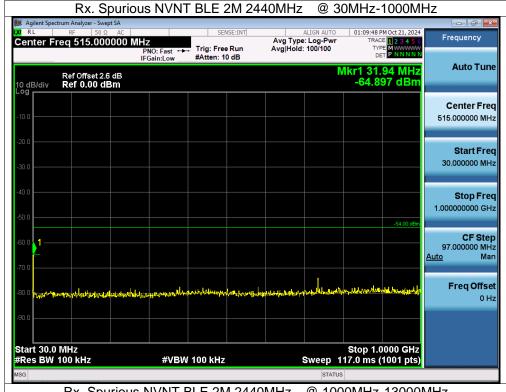


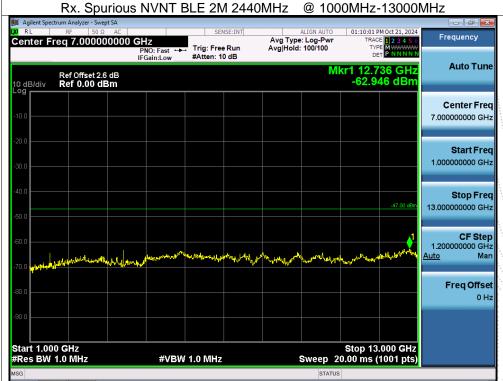
No.: BCTC/RF-EMC-005 Page: 44 of 56 / / / Edition: B.2

No.: BCTC/RF-EMC-005 Page: 45 of 56 / / Edition: B.2

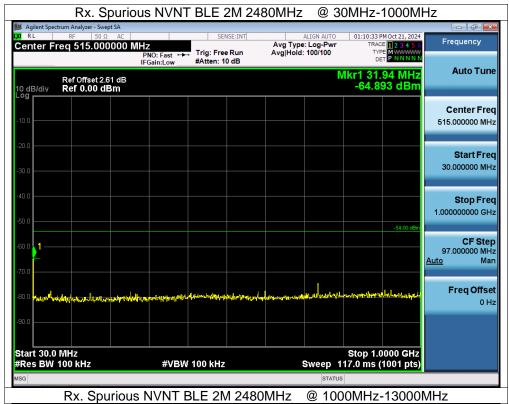

,TC

3C

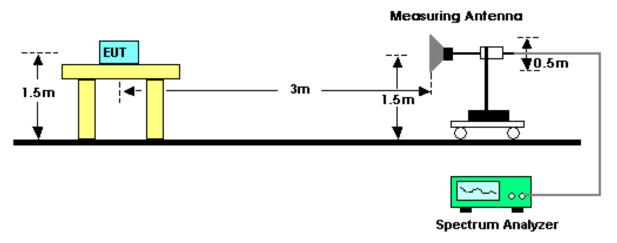

t se

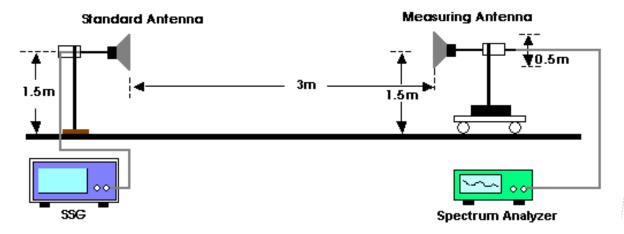


No.: BCTC/RF-EMC-005 Page: 46 of 56 / / / Edition: B.2



No.: BCTC/RF-EMC-005 Page: 47 of 56 / / / Edition: B.2


No.: BCTC/RF-EMC-005 Page: 48 of 56 / / / Edition; B.2


12. Transmission Antenna Gain (EIRP Antenna Power) Measurement

12.1 Block Diagram Of Test Setup

For EUT radiation measurement

For standard antenna measurement

12.2 Limit

Item	Limits	
	≤16.91dBm/MHz (FH form 2427 - 2470.75 MHz)	
EIRP Power Density	≤22.14dBm/MHz (OFDM,DS from 2400~2483.5MHz)	
	≤22.14dBm (Other from 2400~2483.5MHz)	

Note: This test item is not applied for radio equipment with equivalent isotropic radiation power lower than 12.14dBm/MHz, but Antenna Power(Conducted) limit is 10 mW/MHz (10 dBm/MHz), So the test item will not be applied to the transmission antenna which has a gain of 2.14dBi or less

No.: BCTC/RF-EMC-005 Page: 49 of 56 / / / Edition: B.2

12.3 Measuring Instruments And Setting

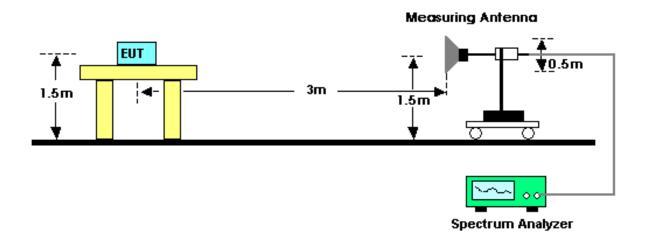
Please refer to section 5 in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameter	Setting		
Attenuation	Auto		
RB/VB	1 MHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

12.4 Test Procedure

- 1. Set EUT ad measuring antenna at the same height and roughly facing each other.
- 2. Move the measuring antenna height up and down within \pm 50cm of EUT height and swing it to find the maximum output of the measuring antenna. The output level at the spectrum analyzer is read sa "E".
- 3. Remove the EUT from the turn table and put the replacing antenna facing to measuring antenna at same height. Set the standard signal generator (SSG) at same frequency and transmit on then receive the signal
- 4. Swing the replacing antenna give a maximum receiving level.
- 5. Move the measuring antenna height up and down within \pm 50cm of replacing antenna height and swing it to find the maximum receiving level.
- 6. Set SSG output power at Pt to give the equivalent output level of "E" or caluate Pt with SSG output which gives the nearest of "E" and difference (± 1dB). Record the Pt.
- 7. Calculate EIRP by the formula below EIRP = Gt L + Pt.
- Gt: gain of replacing antenna (dBi)
- L: feeder loss between SSG and replacing antenna
- Pt: Output power of the SSG
- 8. If the antenna for the EUT has circular polarization, sum of V-field and H-field will be result if measuring antenna is linear polarization.

12.5 Test Result


Note: This test item will not be applied to the transmission antenna which has a gain of 2.14dBi or less.

No.: BCTC/RF-EMC-005 Page: 50 of 56 / / Edition B.2

13. Transmission Radiation Angle Width (3db Beamwidth) Measurement

13.1 Block Diagram Of Test Setup

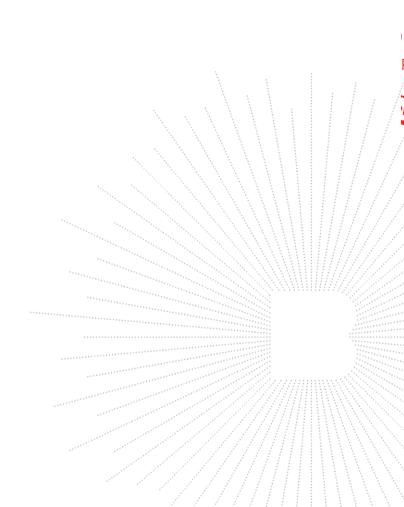
13.2 Limit

Item	Limits
3dB antenna beam width	360/A (If A<1; then A=1)
Note: A = E.I.R.P. / (2.14dBi + "Antenna Power (lim	it)" of each modulation method (*3mW/MHz,
10mW/MHz, etc.))	

13.3 Measuring Instruments And Setting

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	0 MHz
RB	1 MHz
VB	1 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

No.: BCTC/RF-EMC-005 Page: 51 of 56 / / Edition: B.2

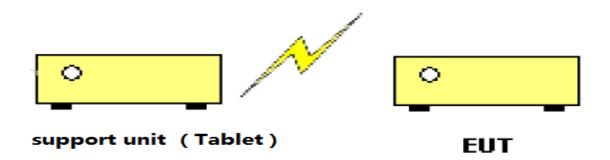


13.4 Test Procedure

- 1. Set EUT and measuring antenna at the same height and roughly facing each other.
- 2. Set spectrum analyzer with condition in section 4.7.2 and tune reference level to observe receving signal position.
- 3. Rotate directions of the EUT horizontally and ertically to find the maximum receiving power.
- 4. Move the measuring antenna height up and down within ± 50cm of EUT height and swing it to find the maximum output of measuing antenna. The output level at the spectrum analyzer is read as "E"
- 5. Calculate permitted radiation angle in horizontal and vertical using EIRP measured in another test method.
- 6. Calculate 3dB antenna beam width by the formula below 360/A (If A<1; then A=1).

13.5 Test Result

N/A



No.: BCTC/RF-EMC-005 Page: 52 of 56 / / Edition: B.2

14. Radio Interference Prevention Capability Measurement

14.1 Block Diagram Of Test Setup

14.2 Limit

Item	Limits
Identification code	≧48 bits

14.3 Measuring Instruments And Setting

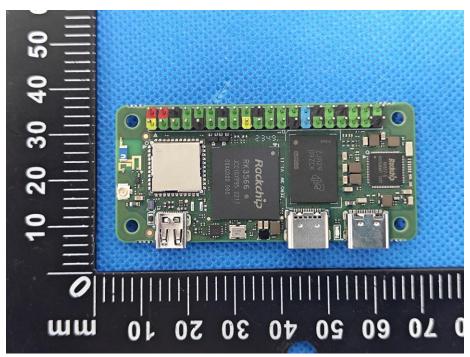
Item	Limits	
MAC IP List	MAC Scan	

14.4 Test Procedure

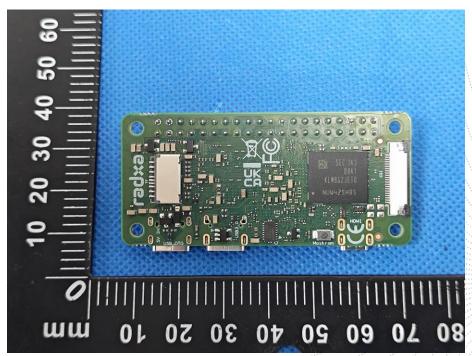
- 1. In the case that the EUT has the function of automatically transmitting the identification code:
- a. Transmit the predetermined identification codes form EUT.
- b. Check the transmitted identification codes with the demodulator.
- 2. In the case of receiving the identification ocde:
- a. Transmit the predetermined identification codes form the counterpart.
- b . Check if communication is normal.
- c. Transmit the signals other than predetermined ID codes form the counterpart.
- d. check if the EUT stops the transmission, or if it displays that idnetification codes are different from the predetermined ones.

14.5 Test Result

Temperature:	25°C	
Humidity:	55 % RH	Test Voltage DC 5V
Operation Mode:	GFSK	


1.Bluetooth Device Address: 56-2b-6c-b8-8f-43

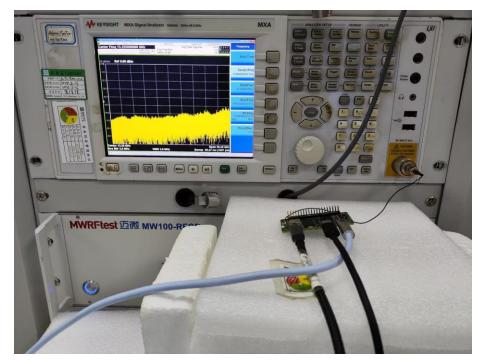
2.Test result: PASS


No.: BCTC/RF-EMC-005 Page: 53 of 56 / / / Edition: B.2

EUT Photo 1

EUT Photo 2

NOTE: Appendix-Photographs Of EUT Constructional Details...


No.: BCTC/RF-EMC-005 Page: 54 of 56 / / Edition: B.2

16. EUT Test Setup Photographs

Report No.: BCTC2410830549-2E

Measurement Photos

No.: BCTC/RF-EMC-005 Page: 55 of 56 / / Edition: B.2

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
- 7. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

*** END ****

No.: BCTC/RF-EMC-005 Page: 56 of 56 / / / Edition: B.2